minecraftvulkan/engine/xe_render_system.cpp
2022-10-03 06:50:49 -04:00

237 lines
7.8 KiB
C++

#include "xe_render_system.hpp"
namespace xe {
RenderSystem::RenderSystem(
std::string vert,
std::string frag,
std::map<uint32_t, uint32_t> uniformBindings,
std::map<uint32_t, Image*> imageBindings,
std::map<uint32_t, std::vector<Image*>> imageArrayBindings,
uint32_t pushCunstantDataSize,
bool cullingEnabled,
bool wireframeEnabled,
std::vector<VkVertexInputAttributeDescription> attributeDescptions,
uint32_t vertexSize
) : xeDevice{Engine::getInstance()->xeDevice},
xeRenderer{Engine::getInstance()->xeRenderer},
pushCunstantDataSize{pushCunstantDataSize},
uniformBindings{uniformBindings},
imageBindings{imageBindings},
imageArrayBindings{imageArrayBindings} {
createDescriptorPool();
createDescriptorSetLayout();
createUniformBuffers();
createDescriptorSets();
createPipelineLayout();
createPipeline(xeRenderer.getSwapChainRenderPass(), vert, frag, cullingEnabled, wireframeEnabled, attributeDescptions, vertexSize);
}
RenderSystem::~RenderSystem() {
vkDestroyPipelineLayout(xeDevice.device(), pipelineLayout, nullptr);
};
void RenderSystem::createDescriptorPool() {
DescriptorPool::Builder builder{xeDevice};
builder.setMaxSets(SwapChain::MAX_FRAMES_IN_FLIGHT);
builder.addPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, uniformBindings.size() * SwapChain::MAX_FRAMES_IN_FLIGHT);
uint32_t images = imageBindings.size();
for ( const auto &[binding, size]: imageArrayBindings) {
images += size.size();
}
builder.addPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, images * SwapChain::MAX_FRAMES_IN_FLIGHT);
xeDescriptorPool = builder.build();
}
void RenderSystem::createDescriptorSetLayout() {
DescriptorSetLayout::Builder builder{xeDevice};
for ( const auto &[binding, size]: uniformBindings) {
builder.addBinding(binding, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, nullptr, 1);
}
for ( const auto &[binding, image]: imageBindings) {
builder.addBinding(binding, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, &(image->textureSampler), 1);
}
for ( const auto &[binding, images]: imageArrayBindings) {
builder.addBinding(binding, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0, images.size());
}
xeDescriptorSetLayout = builder.build();
}
void RenderSystem::createUniformBuffers() {
for ( const auto &[binding, bufferSize]: uniformBindings) {
uboBuffers[binding] = std::vector<std::unique_ptr<Buffer>>(SwapChain::MAX_FRAMES_IN_FLIGHT);
for (int i = 0; i < uboBuffers[binding].size(); i++) {
uboBuffers[binding][i] = std::make_unique<Buffer>(
xeDevice,
bufferSize,
SwapChain::MAX_FRAMES_IN_FLIGHT,
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
uboBuffers[binding][i]->map();
}
}
}
void RenderSystem::createDescriptorSets() {
descriptorSets = std::vector<VkDescriptorSet>(SwapChain::MAX_FRAMES_IN_FLIGHT);
for (int i = 0; i < descriptorSets.size(); i++) {
updateDescriptorSet(i, true);
}
}
void RenderSystem::updateDescriptorSet(int frameIndex, bool allocate) {
DescriptorWriter writer{*xeDescriptorSetLayout, *xeDescriptorPool};
std::vector<VkDescriptorBufferInfo> bufferInfos{};
int i = 0;
for ( const auto &[binding, size]: uniformBindings) {
bufferInfos.push_back(uboBuffers[binding][frameIndex]->descriptorInfo());
writer.writeBuffer(binding, &bufferInfos[i]);
i++;
}
for ( const auto &[binding, image]: imageBindings) {
VkDescriptorImageInfo imageInfo{};
imageInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
imageInfo.imageView = image->textureImageView;
imageInfo.sampler = image->textureSampler;
writer.writeImage(binding, &imageInfo);
}
std::vector<VkDescriptorImageInfo> imageInfos{};
for ( const auto &[binding, images]: imageArrayBindings) {
for( const auto &image: images) {
VkDescriptorImageInfo imageInfo{};
imageInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
imageInfo.imageView = image->textureImageView;
imageInfo.sampler = image->textureSampler;
imageInfos.push_back(imageInfo);
}
writer.writeImageArray(binding, &imageInfos);
}
if (allocate) {
writer.build(descriptorSets[frameIndex]);
} else {
writer.overwrite(descriptorSets[frameIndex]);
}
}
void RenderSystem::createPipelineLayout() {
VkPushConstantRange pushConstantRange;
pushConstantRange.stageFlags = VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT;
pushConstantRange.offset = 0;
pushConstantRange.size = pushCunstantDataSize;
std::vector<VkDescriptorSetLayout> descriptorSetLayouts{xeDescriptorSetLayout->getDescriptorSetLayout()};
VkPipelineLayoutCreateInfo pipelineLayoutInfo{};
pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pipelineLayoutInfo.setLayoutCount = static_cast<uint32_t>(descriptorSetLayouts.size());
pipelineLayoutInfo.pSetLayouts = descriptorSetLayouts.data();
if (pushCunstantDataSize > 0) {
pipelineLayoutInfo.pushConstantRangeCount = 1;
pipelineLayoutInfo.pPushConstantRanges = &pushConstantRange;
} else {
pipelineLayoutInfo.pushConstantRangeCount = 0;
pipelineLayoutInfo.pPushConstantRanges = nullptr;
}
if(vkCreatePipelineLayout(xeDevice.device(), &pipelineLayoutInfo, nullptr, &pipelineLayout) != VK_SUCCESS) {
std::runtime_error("failed to create pipeline layout!");
}
}
void RenderSystem::createPipeline(VkRenderPass renderPass, std::string vert, std::string frag, bool cullingEnabled, bool wireframeEnabled, std::vector<VkVertexInputAttributeDescription> attributeDescptions, uint32_t vertexSize) {
assert(pipelineLayout != nullptr && "Cannot create pipeline before pipeline layout");
PipelineConfigInfo pipelineConfig{};
Pipeline::defaultPipelineConfigInfo(pipelineConfig, xeDevice);
if (cullingEnabled) {
pipelineConfig.rasterizationInfo.cullMode = VK_CULL_MODE_BACK_BIT;
}
if(wireframeEnabled) {
pipelineConfig.rasterizationInfo.polygonMode = VK_POLYGON_MODE_LINE;
}
pipelineConfig.renderPass = renderPass;
pipelineConfig.pipelineLayout = pipelineLayout;
xePipeline = std::make_unique<Pipeline>(
xeDevice,
vert,
frag,
pipelineConfig,
attributeDescptions,
vertexSize
);
}
void RenderSystem::start() {
xeRenderer.beginSwapChainRenderPass(xeRenderer.getCurrentCommandBuffer());
xePipeline->bind(xeRenderer.getCurrentCommandBuffer());
if(descriptorSets.size() > 0) {
vkCmdBindDescriptorSets(
xeRenderer.getCurrentCommandBuffer(),
VK_PIPELINE_BIND_POINT_GRAPHICS,
pipelineLayout,
0,
1,
&descriptorSets[xeRenderer.getFrameIndex()],
0,
nullptr);
}
}
void RenderSystem::loadPushConstant(void *pushConstantData) {
vkCmdPushConstants(
xeRenderer.getCurrentCommandBuffer(),
pipelineLayout,
VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT,
0,
pushCunstantDataSize,
pushConstantData);
}
void RenderSystem::loadUniformObject(uint32_t binding, void *uniformBufferData) {
uboBuffers[binding][xeRenderer.getFrameIndex()]->writeToBuffer(uniformBufferData);
}
void RenderSystem::loadTexture(uint32_t binding, Image *image) {
imageBindings[binding] = image;
updateDescriptorSet(xeRenderer.getFrameIndex(), false);
}
void RenderSystem::loadTextureArray(uint32_t binding, std::vector<Image*>& images) {
imageArrayBindings[binding] = images;
updateDescriptorSet(xeRenderer.getFrameIndex(), false);
}
void RenderSystem::render(GameObject &gameObject) {
if(gameObject.model == nullptr) return;
gameObject.model->bind(xeRenderer.getCurrentCommandBuffer());
gameObject.model->draw(xeRenderer.getCurrentCommandBuffer());
}
void RenderSystem::stop() {
xeRenderer.endSwapChainRenderPass(xeRenderer.getCurrentCommandBuffer());
}
}