#include "xe_render_system.hpp" namespace xe { RenderSystem::RenderSystem( std::string vert, std::string frag, std::map uniformBindings, std::map imageBindings, std::map> imageArrayBindings, uint32_t pushCunstantDataSize, bool cullingEnabled, bool wireframeEnabled, std::vector attributeDescptions, uint32_t vertexSize ) : xeDevice{Engine::getInstance()->xeDevice}, xeRenderer{Engine::getInstance()->xeRenderer}, pushCunstantDataSize{pushCunstantDataSize}, uniformBindings{uniformBindings}, imageBindings{imageBindings}, imageArrayBindings{imageArrayBindings} { createDescriptorPool(); createDescriptorSetLayout(); createUniformBuffers(); createDescriptorSets(); createPipelineLayout(); createPipeline(xeRenderer.getSwapChainRenderPass(), vert, frag, cullingEnabled, wireframeEnabled, attributeDescptions, vertexSize); } RenderSystem::~RenderSystem() { vkDestroyPipelineLayout(xeDevice.device(), pipelineLayout, nullptr); }; void RenderSystem::createDescriptorPool() { DescriptorPool::Builder builder{xeDevice}; builder.setMaxSets(SwapChain::MAX_FRAMES_IN_FLIGHT); builder.addPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, uniformBindings.size() * SwapChain::MAX_FRAMES_IN_FLIGHT); uint32_t images = imageBindings.size(); for ( const auto &[binding, size]: imageArrayBindings) { images += size.size(); } builder.addPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, images * SwapChain::MAX_FRAMES_IN_FLIGHT); xeDescriptorPool = builder.build(); } void RenderSystem::createDescriptorSetLayout() { DescriptorSetLayout::Builder builder{xeDevice}; for ( const auto &[binding, size]: uniformBindings) { builder.addBinding(binding, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, nullptr, 1); } for ( const auto &[binding, image]: imageBindings) { builder.addBinding(binding, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, &(image->textureSampler), 1); } for ( const auto &[binding, images]: imageArrayBindings) { builder.addBinding(binding, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0, images.size()); } xeDescriptorSetLayout = builder.build(); } void RenderSystem::createUniformBuffers() { for ( const auto &[binding, bufferSize]: uniformBindings) { uboBuffers[binding] = std::vector>(SwapChain::MAX_FRAMES_IN_FLIGHT); for (int i = 0; i < uboBuffers[binding].size(); i++) { uboBuffers[binding][i] = std::make_unique( xeDevice, bufferSize, SwapChain::MAX_FRAMES_IN_FLIGHT, VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); uboBuffers[binding][i]->map(); } } } void RenderSystem::createDescriptorSets() { descriptorSets = std::vector(SwapChain::MAX_FRAMES_IN_FLIGHT); for (int i = 0; i < descriptorSets.size(); i++) { updateDescriptorSet(i, true); } } void RenderSystem::updateDescriptorSet(int frameIndex, bool allocate) { DescriptorWriter writer{*xeDescriptorSetLayout, *xeDescriptorPool}; std::vector bufferInfos{}; int i = 0; for ( const auto &[binding, size]: uniformBindings) { bufferInfos.push_back(uboBuffers[binding][frameIndex]->descriptorInfo()); writer.writeBuffer(binding, &bufferInfos[i]); i++; } for ( const auto &[binding, image]: imageBindings) { VkDescriptorImageInfo imageInfo{}; imageInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; imageInfo.imageView = image->textureImageView; imageInfo.sampler = image->textureSampler; writer.writeImage(binding, &imageInfo); } std::vector imageInfos{}; for ( const auto &[binding, images]: imageArrayBindings) { for( const auto &image: images) { VkDescriptorImageInfo imageInfo{}; imageInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; imageInfo.imageView = image->textureImageView; imageInfo.sampler = image->textureSampler; imageInfos.push_back(imageInfo); } writer.writeImageArray(binding, &imageInfos); } if (allocate) { writer.build(descriptorSets[frameIndex]); } else { writer.overwrite(descriptorSets[frameIndex]); } } void RenderSystem::createPipelineLayout() { VkPushConstantRange pushConstantRange; pushConstantRange.stageFlags = VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT; pushConstantRange.offset = 0; pushConstantRange.size = pushCunstantDataSize; std::vector descriptorSetLayouts{xeDescriptorSetLayout->getDescriptorSetLayout()}; VkPipelineLayoutCreateInfo pipelineLayoutInfo{}; pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; pipelineLayoutInfo.setLayoutCount = static_cast(descriptorSetLayouts.size()); pipelineLayoutInfo.pSetLayouts = descriptorSetLayouts.data(); if (pushCunstantDataSize > 0) { pipelineLayoutInfo.pushConstantRangeCount = 1; pipelineLayoutInfo.pPushConstantRanges = &pushConstantRange; } else { pipelineLayoutInfo.pushConstantRangeCount = 0; pipelineLayoutInfo.pPushConstantRanges = nullptr; } if(vkCreatePipelineLayout(xeDevice.device(), &pipelineLayoutInfo, nullptr, &pipelineLayout) != VK_SUCCESS) { std::runtime_error("failed to create pipeline layout!"); } } void RenderSystem::createPipeline(VkRenderPass renderPass, std::string vert, std::string frag, bool cullingEnabled, bool wireframeEnabled, std::vector attributeDescptions, uint32_t vertexSize) { assert(pipelineLayout != nullptr && "Cannot create pipeline before pipeline layout"); PipelineConfigInfo pipelineConfig{}; Pipeline::defaultPipelineConfigInfo(pipelineConfig, xeDevice); if (cullingEnabled) { pipelineConfig.rasterizationInfo.cullMode = VK_CULL_MODE_BACK_BIT; } if(wireframeEnabled) { pipelineConfig.rasterizationInfo.polygonMode = VK_POLYGON_MODE_LINE; } pipelineConfig.renderPass = renderPass; pipelineConfig.pipelineLayout = pipelineLayout; xePipeline = std::make_unique( xeDevice, vert, frag, pipelineConfig, attributeDescptions, vertexSize ); } void RenderSystem::start() { xeRenderer.beginSwapChainRenderPass(xeRenderer.getCurrentCommandBuffer()); xePipeline->bind(xeRenderer.getCurrentCommandBuffer()); if(descriptorSets.size() > 0) { vkCmdBindDescriptorSets( xeRenderer.getCurrentCommandBuffer(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets[xeRenderer.getFrameIndex()], 0, nullptr); } } void RenderSystem::loadPushConstant(void *pushConstantData) { vkCmdPushConstants( xeRenderer.getCurrentCommandBuffer(), pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0, pushCunstantDataSize, pushConstantData); } void RenderSystem::loadUniformObject(uint32_t binding, void *uniformBufferData) { uboBuffers[binding][xeRenderer.getFrameIndex()]->writeToBuffer(uniformBufferData); } void RenderSystem::loadTexture(uint32_t binding, Image *image) { imageBindings[binding] = image; updateDescriptorSet(xeRenderer.getFrameIndex(), false); } void RenderSystem::loadTextureArray(uint32_t binding, std::vector& images) { imageArrayBindings[binding] = images; updateDescriptorSet(xeRenderer.getFrameIndex(), false); } void RenderSystem::render(GameObject &gameObject) { if(gameObject.model == nullptr) return; gameObject.model->bind(xeRenderer.getCurrentCommandBuffer()); gameObject.model->draw(xeRenderer.getCurrentCommandBuffer()); } void RenderSystem::stop() { xeRenderer.endSwapChainRenderPass(xeRenderer.getCurrentCommandBuffer()); } }