1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
|
#ifndef POI_VORONOI
#define POI_VORONOI
#include "CGI_PoiRNG.cginc"
uint _VoronoiSpace;
uint _VoronoiBlend;
uint _VoronoiType;
float4 _VoronoiColor0;
float _VoronoiEmission0;
float4 _VoronoiColor1;
float _VoronoiEmission1;
float2 _VoronoiGradient;
float _VoronoiScale;
float3 _VoronoiSpeed;
int _VoronoiOctaveNumber;
float _VoronoiOctaveScale;
float _VoronoiOctaveAttenuation;
float _VoronoiEnableRandomCellColor;
float2 _VoronoiRandomMinMaxSaturation;
float2 _VoronoiRandomMinMaxBrightness;
float3 randomPoint;
POI_TEXTURE_NOSAMPLER(_VoronoiMask);
POI_TEXTURE_NOSAMPLER(_VoronoiNoise);
float _VoronoiNoiseIntensity;
float2 inoise(float3 P, float jitter)
{
float3 Pi = mod(floor(P), 289.0);
float3 Pf = frac(P);
float3 oi = float3(-1.0, 0.0, 1.0);
float3 of = float3(-0.5, 0.5, 1.5);
float3 px = Permutation(Pi.x + oi);
float3 py = Permutation(Pi.y + oi);
float3 p, ox, oy, oz, dx, dy, dz;
float2 F = 1e6;
for (int i = 0; i < 3; i ++)
{
for (int j = 0; j < 3; j ++)
{
p = Permutation(px[i] + py[j] + Pi.z + oi); // pij1, pij2, pij3
ox = frac(p * K) - Ko;
oy = mod(floor(p * K), 7.0) * K - Ko;
p = Permutation(p);
oz = frac(p * K) - Ko;
dx = Pf.x - of[i] + jitter * ox;
dy = Pf.y - of[j] + jitter * oy;
dz = Pf.z - of + jitter * oz;
float3 d = dx * dx + dy * dy + dz * dz; // dij1, dij2 and dij3, squared
//Find lowest and second lowest distances
for (int n = 0; n < 3; n ++)
{
if (d[n] < F[0])
{
F[1] = F[0];
F[0] = d[n];
randomPoint = p;
}
else if(d[n] < F[1])
{
F[1] = d[n];
}
}
}
}
return F;
}
float voronoi2D(in float2 x, float scale, float2 speed)
{
x *= scale;
x += speed * _Time.x;
float2 n = floor(x);
float2 f = frac(x);
// first pass: regular voronoi
float2 mg, mr;
float md = 8.0;
for (int j = -1; j <= 1; j ++)
{
for (int i = -1; i <= 1; i ++)
{
float2 g = float2(float(i), float(j));
float2 o = random2(n + g);
float2 currentPoint = o;
float2 r = g + o - f;
float d = dot(r, r);
if (d < md)
{
md = d;
mr = r;
mg = g;
randomPoint.xy = currentPoint;
}
}
}
// second pass: distance to borders
md = 8.0;
for (int r = -2; r <= 2; r ++)
{
for (int q = -2; q <= 2; q ++)
{
float2 g = mg + float2(float(q), float(r));
float2 o = random2(n + g);
float2 r = g + o - f;
if (dot(mr - r, mr - r) > 0.00001)
{
md = min(md, dot(0.5 * (mr + r), normalize(r - mr)));
}
}
}
return md;
}
float voronoi3D(in float3 x, float scale, float3 speed)
{
x *= scale;
x += speed * _Time.x;
float3 n = floor(x);
float3 f = frac(x);
// first pass: regular voronoi
float3 mg, mr;
float md = 8.0;
for (int j = -1; j <= 1; j ++)
{
for (int i = -1; i <= 1; i ++)
{
for (int h = -1; h <= 1; h ++)
{
float3 g = float3(float(h), float(i), float(j));
float3 o = random3(n + g);
float3 currentPoint = o;
float3 r = g + o - f;
float d = dot(r, r);
if (d < md)
{
md = d;
mr = r;
mg = g;
randomPoint = currentPoint;
}
}
}
}
// second pass: distance to borders
md = 8.0;
for (int r = -2; r <= 2; r ++)
{
for (int q = -2; q <= 2; q ++)
{
for (int p = -2; p <= 2; p ++)
{
float3 g = mg + float3(float(p), float(q), float(r));
float3 o = random3(n + g);
float3 r = g + o - f;
if (dot(mr - r, mr - r) > 0.00001)
{
md = min(md, dot(0.5 * (mr + r), normalize(r - mr)));
}
}
}
}
return md;
}
// fracal sum, range -1.0 - 1.0
float VoronoiNoise_Octaves(float3 p, float scale, float3 speed, int octaveNumber, float octaveScale, float octaveAttenuation, float jitter, float time)
{
float freq = scale;
float weight = 1.0f;
float sum = 0;
for (int i = 0; i < octaveNumber; i ++)
{
float2 F = inoise(p * freq + time * speed, jitter) * weight;
sum += sqrt(F[0]);
freq *= octaveScale;
weight *= 1.0f - octaveAttenuation;
}
return sum;
}
float VoronoiNoiseDiff_Octaves(float3 p, float scale, float3 speed, int octaveNumber, float octaveScale, float octaveAttenuation, float jitter, float time)
{
float freq = scale;
float weight = 1.0f;
float sum = 0;
for (int i = 0; i < octaveNumber; i ++)
{
float2 F = inoise(p * freq + time * speed, jitter) * weight;
sum += sqrt(F[1]) - sqrt(F[0]);
freq *= octaveScale;
weight *= 1.0f - octaveAttenuation;
}
return sum;
}
void applyVoronoi(inout float4 finalColor, inout float3 VoronoiEmission)
{
_VoronoiOctaveNumber = 1;
_VoronoiOctaveScale = 1;
_VoronoiOctaveAttenuation = 1;
randomPoint = 0;
float voronoi = 0;
float3 position = 0;
UNITY_BRANCH
if (_VoronoiSpace == 0)
{
position = poiMesh.localPos;
}
UNITY_BRANCH
if(_VoronoiSpace == 1)
{
position = poiMesh.worldPos;
}
UNITY_BRANCH
if(_VoronoiSpace == 2)
{
position = float3(poiMesh.uv[0].x, poiMesh.uv[0].y, 0);
}
float mask = POI2D_SAMPLER_PAN(_VoronoiMask, _MainTex, poiMesh.uv[_VoronoiMaskUV], _VoronoiMaskPan).r;
float edgeNoise = POI2D_SAMPLER_PAN(_VoronoiNoise, _MainTex, poiMesh.uv[_VoronoiNoiseUV], _VoronoiNoisePan).r * _VoronoiNoiseIntensity;
UNITY_BRANCH
if(_VoronoiType == 0) // Basic
{
voronoi = voronoi2D(position.xy, _VoronoiScale, _VoronoiSpeed);
}
UNITY_BRANCH
if (_VoronoiType == 1) // Diff
{
voronoi = VoronoiNoiseDiff_Octaves(position, _VoronoiScale, _VoronoiSpeed, _VoronoiOctaveNumber, _VoronoiOctaveScale, _VoronoiOctaveAttenuation, 1, _Time.x);
}
UNITY_BRANCH
if (_VoronoiType == 2) // Fixed Border
{
voronoi = voronoi3D(position, _VoronoiScale, _VoronoiSpeed);
// isolines
//color = c.x * (0.5 + 0.5 * sin(64.0 * c.x)) * 1.0;
}
if (_VoronoiEnableRandomCellColor == 1)
{
float3 rando = random3(randomPoint);
fixed hue = rando.x;
fixed saturation = lerp(_VoronoiRandomMinMaxSaturation.x, _VoronoiRandomMinMaxSaturation.y, rando.y);
fixed value = lerp(_VoronoiRandomMinMaxBrightness.x, _VoronoiRandomMinMaxBrightness.y, rando.z);
float3 hsv = float3(hue, saturation, value);
_VoronoiColor1.rgb = HSVtoRGB(hsv);
}
_VoronoiGradient.xy += edgeNoise;
float ramp = smoothstep(_VoronoiGradient.x, _VoronoiGradient.y, voronoi);
UNITY_BRANCH
if(_VoronoiBlend == 0)
{
float4 voronoiColor = lerp(_VoronoiColor0, _VoronoiColor1, ramp);
finalColor.rgb = lerp(finalColor.rgb, voronoiColor, mask * voronoiColor.a);
}
float4 voronoiEmissionColor = lerp(_VoronoiColor0 * _VoronoiEmission0, _VoronoiColor1 * _VoronoiEmission1, ramp);
VoronoiEmission = voronoiEmissionColor.rgb * mask * voronoiEmissionColor.a;
}
#endif
|