1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
|
#ifndef POI_MATH
#define POI_MATH
#ifndef pi
#define pi float(3.14159265359)
#endif
float4 quaternion_conjugate(float4 v)
{
return float4(
v.x, -v.yzw
);
}
float4 quaternion_mul(float4 v1, float4 v2)
{
float4 result1 = (v1.x * v2 + v1 * v2.x);
float4 result2 = float4(
- dot(v1.yzw, v2.yzw),
cross(v1.yzw, v2.yzw)
);
return float4(result1 + result2);
}
// angle : radians
float4 get_quaternion_from_angle(float3 axis, float angle)
{
return float4(
cos(angle / 2.0),
normalize(axis) * sin(angle / 2.0)
);
}
float4 quaternion_from_vector(float3 inVec)
{
return float4(0.0, inVec);
}
float degree_to_radius(float degree)
{
return(
degree / 180.0 * pi
);
}
float3 rotate_with_quaternion(float3 inVec, float3 rotation)
{
float4 qx = get_quaternion_from_angle(float3(1, 0, 0), degree_to_radius(rotation.x));
float4 qy = get_quaternion_from_angle(float3(0, 1, 0), degree_to_radius(rotation.y));
float4 qz = get_quaternion_from_angle(float3(0, 0, 1), degree_to_radius(rotation.z));
#define MUL3(A, B, C) quaternion_mul(quaternion_mul((A), (B)), (C))
float4 quaternion = normalize(MUL3(qx, qy, qz));
float4 conjugate = quaternion_conjugate(quaternion);
float4 inVecQ = quaternion_from_vector(inVec);
float3 rotated = (
MUL3(quaternion, inVecQ, conjugate)
).yzw;
return rotated;
}
float4 transform(float4 input, float4 pos, float4 rotation, float4 scale)
{
input.rgb *= (scale.xyz * scale.w);
input = float4(
rotate_with_quaternion(input.xyz, rotation.xyz * rotation.w)
+ (pos.xyz * pos.w),
input.w
);
return input;
}
#endif
|