summaryrefslogtreecommitdiff
path: root/mld/link.c
blob: 8e61ce28c917d6b38590ac11de1d381ee98444c6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
#include <elf.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <merror.h>
#include <string.h>
#include <sys/stat.h>
#include <melf.h>
#include <fcntl.h>

#include "link.h"
#include "mips.h"

static int load_objects(struct linker *linker)
{
	int max_entries = linker->args->in_count + 1;
	// 1 needed for the runtime

	linker->objects = malloc(sizeof(struct object) *
			  max_entries);
	linker->obj_len = 0;

	if (linker->objects == NULL) {
		PERROR("cannot alloc");
		return M_ERROR;
	}

	for (int i = 0; i < linker->args->in_count; i++) {
		char *path = linker->args->in_files[i];
		struct object *obj = &linker->objects[linker->obj_len];

		// check for duplicate
		for (size_t j = 0; j < linker->obj_len; j++) {
			const char *dupname = linker->objects[j].name;
			struct stat st, st2;
			if (stat(path, &st) || stat(dupname, &st2))
				continue;
			if (st.st_ino == st2.st_ino)
				goto skip_obj;
		}

		// load obj file
		linker->obj_len++;
		if (object_load(obj, path, i+1))
			return M_ERROR;
skip_obj:
	}

	if (linker->args->freestanding == false) {
		#define _STR(x) _STR2(x)
		#define _STR2(x) #x

		char *path = _STR(PREFIX) "/lib/mips/runtime.o";
		struct object *obj = &linker->objects[linker->obj_len++];
		if (object_load(obj, path, 0))
			return M_ERROR;

		#undef _STR
		#undef _STR2
	}

	return M_SUCCESS;
}

/**
 * Relocates all segments with the given name
 * (since they need to be next to eachother)
 */
static int relocate_segment_name(struct linker *linker, const char *name)
{
	for (size_t i = 0; i < linker->obj_len; i++) {
		struct object *obj = &linker->objects[i];
		for (size_t j = 0; j < obj->segment_len; j++) {
			struct segment *seg = &obj->segments[j];

			// check if the segment has already been relocated
			if (seg->new_vaddr != 0)
				continue;

			// make sure the segments name matches what
			// we are looking for
			if (strcmp(seg->name, name) != 0)
				continue;

			if (ADDR_CHK(linker->off, seg->size, UINT32_MAX)) {
				ERROR("linker offset overflow");
				return M_ERROR;
			}

			// is the segment a TEXT type or DATA type??
			if (B32(seg->phdr->p_flags) & PF_X) {
				// TEXT
				if (ADDR_CHK(linker->text_vaddr, seg->size,
							DATA_VADDR_MIN)) {
					ERROR("linker text vaddr overflow");
					return M_ERROR;
				}

				seg->new_off = linker->off;
				seg->new_vaddr = linker->text_vaddr;
				linker->off += seg->size;
				linker->text_vaddr += seg->size;
			} else {
				// DATA
				if (ADDR_CHK(linker->data_vaddr, seg->size,
							UINT32_MAX)) {
					ERROR("linker data vaddr overflow");
					return M_ERROR;
				}

				seg->new_off = linker->off;
				seg->new_vaddr = linker->data_vaddr;
				linker->off += seg->size;
				linker->data_vaddr += seg->size;
			}

			// if this is an existing segment, append this
			// part
			struct segment_table_entry *ent;
			if (segtab_get(&linker->segments, &ent, name) ==
				M_SUCCESS) {
				if (segtab_ent_push(ent, seg))
					return M_ERROR;
			} else {
				// update vaddr to be page aligned
				uint32_t m = seg->new_vaddr % SEC_ALIGN;
				if (m) {
					uint32_t add = SEC_ALIGN - m;
					seg->new_vaddr += add;
					if (B32(seg->phdr->p_flags) & PF_X)
						linker->text_vaddr += add;
					else
						linker->data_vaddr += add;
				}

                                // else create a new segment
				if (segtab_push(&linker->segments, NULL, seg))
					return M_ERROR;
			}
		}
	}

	return M_SUCCESS;
}

static int relocate_segments(struct linker *linker)
{
	for (size_t i = 0; i < linker->obj_len; i++) {
		struct object *obj = &linker->objects[i];
		for (size_t j = 0; j < obj->segment_len; j++) {
			struct segment *seg = &obj->segments[j];

			// check if the segment has already been relocated
			if (seg->new_vaddr != 0)
				continue;
			if(relocate_segment_name(linker, seg->name))
				return M_ERROR;
		}
	}

	return M_SUCCESS;
}

static int relocate_symbol(struct linker *linker, struct object *obj,
			   struct symbol_table *symtab, const Elf32_Sym *sym)
{
	size_t shndx = B16(sym->st_shndx);
	if (shndx == 0 || shndx == SHN_ABS)
		return M_SUCCESS; // ignore this symbol

	// find the given section
	const char *name = symtab->strtab->data + B32(sym->st_name);

	if (shndx >= obj->shdr_len) {
		ERROR("shdr entry [%d] name out of bounds", shndx);
		return M_ERROR;
	}

	if (B32(sym->st_name) >= symtab->strtab->len) {
		ERROR("symbol name out of bounds");
		return M_ERROR;
	}

	struct segment *sec = NULL;
	for (size_t i = 0; i < obj->phdr_len; i++) {
		if (obj->phdr_to_shdr_mapping[i] == shndx) {
			sec = &obj->segments[i];
			break;
		}
	}

	if (sec == NULL) {
		ERROR("could not locate segment for symbol '%s'", name);
		return M_ERROR;
	}

	struct segment_table_entry *ent = NULL;
	if (segtab_get(&linker->segments, &ent, sec->name)) {
		ERROR("could not locate segment for symbol '%s'", name);
		return M_ERROR;
	}

	// segments start at shindx 1
	ptrdiff_t new_shndx = (ent - linker->segments.entries) + 1;

	size_t str_off = 0;
	if (strtab_push(linker->symtab.strtab, name, &str_off))
		return M_ERROR;

	int32_t off = sec->new_vaddr + B32(sym->st_value);
	Elf32_Sym new = *sym;
	new.st_name = B32(str_off);
	new.st_value = B32(off);
	new.st_shndx = B16(new_shndx);
	new.st_size = 0;

	// rename symbol if its name is empty to perm placeholder
	//if (B32(sym->st_name) == 0) {
	//	#define __MAX 512
	//	char name[__MAX];
	//	memset(name, 0, __MAX);
	//	strcat(name, "__sym");
	//	snprintf(name + strlen(name), __MAX - strlen(name), "%d",
	//		B32(sym->st_value));
	//	if (strtab_push(linker->symtab.strtab, name, &str_off))
	//		return M_ERROR;
	//	new.st_name = B32(str_off);
	//	#undef __MAX
	//}

	if (symtab_get(&linker->symtab, NULL, name, obj->index) == M_SUCCESS) {
		ERROR("cannot link doubly defiend symbol '%s'", name);
		return M_ERROR;
	}

	if (symtab_push(&linker->symtab, &new))
		return M_ERROR;

	if (symtab_map_push(&linker->symtab_map, obj))
		return M_ERROR;

	return M_SUCCESS;
}

static int relocate_symbols(struct linker *linker)
{
	for (size_t i = 0; i < linker->obj_len; i++) {
		struct object *obj = &linker->objects[i];
		for (size_t j = 0; j < obj->shdr_len; j++) {
			struct symbol_table *symtab = &obj->symtabs[j];
			if (symtab->len < 1)
				continue;

			for (size_t k = 0; k < symtab->len; k++) {
				const Elf32_Sym *sym = &symtab->syms[k];
				if (relocate_symbol(linker, obj, symtab, sym))
					return M_ERROR;
			}
		}
	}
	return M_SUCCESS;
}

static int assemble_phdr(struct linker *linker)
{
	Elf32_Phdr *phdr = malloc(sizeof(Elf32_Phdr) * linker->segments.len);

	if (phdr == NULL) {
		PERROR("cannot alloc");
		return M_ERROR;
	}

	for (uint32_t i = 0; i < linker->segments.len; i++) {
		Elf32_Phdr *hdr = &phdr[i];
		struct segment_table_entry *ent = &linker->segments.entries[i];
		size_t size = segtab_ent_size(ent);
		hdr->p_type = B32(PT_LOAD);
		hdr->p_flags = B32(
			(ent->parts[0]->execute << 0) |
			(ent->parts[0]->write << 1) |
			(ent->parts[0]->read << 2));
		hdr->p_offset = B32(ent->off);
		hdr->p_vaddr = B32(ent->vaddr);
		hdr->p_paddr = B32(ent->vaddr);
		hdr->p_filesz = B32(size);
		hdr->p_memsz = B32(size);
		hdr->p_align = B32(SEC_ALIGN);
	}

	linker->phdr = phdr;
	linker->phdr_len = linker->segments.len;
	return M_SUCCESS;
}

static int assemble_shdr(struct linker *linker)
{
	uint32_t max_entries = 0;
	max_entries += 1; // null
	max_entries += 1; // symtab
	max_entries += 1; // strtab
	max_entries += 1; // shstrtab
	max_entries += linker->segments.len; // segments

	Elf32_Shdr *shdr = malloc(sizeof(Elf32_Shdr) * max_entries);
	if (shdr == NULL) {
		PERROR("cannot alloc");
		return M_ERROR;
	}
	linker->shdr = shdr;

	size_t str_off;
	uint32_t count = 0;

	// null
	shdr[count++] = (Elf32_Shdr) {0};

	// segments
	for (uint32_t i = 0; i < linker->segments.len; i++) {
		struct segment_table_entry *ent = &linker->segments.entries[i];
		if (strtab_push(&linker->shstrtab, ent->name, &str_off))
			return M_ERROR;

		shdr[count++] = (Elf32_Shdr) {
			.sh_name = B32(str_off),
			.sh_type = B32(SHT_PROGBITS),
			.sh_flags = B32(
				(ent->parts[0]->write << 0) |
				(ent->parts[0]->execute << 2) |
				SHF_ALLOC),
			.sh_addr = B32(ent->vaddr),
			.sh_offset = B32(ent->off),
			.sh_size = B32(segtab_ent_size(ent)),
			.sh_link = 0,
			.sh_info = 0,
			.sh_addralign = B32(ent->parts[0]->align),
			.sh_entsize = 0,
		};
	}

	// symbol table
	if (strtab_push(&linker->shstrtab, ".symtab", &str_off))
		return M_ERROR;

	linker->symtab_shidx = count;
	shdr[count++] = (Elf32_Shdr) {
		.sh_name = B32(str_off),
		.sh_type = B32(SHT_SYMTAB),
		.sh_flags = 0,
		.sh_addr = 0,
		.sh_offset = 0,
		.sh_size = 0,
		.sh_link = 0,
		.sh_info = 0,
		.sh_addralign = B32(1),
		.sh_entsize = B32(sizeof(Elf32_Sym)),
	};

	// string table
	if (strtab_push(&linker->shstrtab, ".strtab", &str_off))
		return M_ERROR;

	linker->strtab_shidx = count;
	shdr[count++] = (Elf32_Shdr) {
		.sh_name = B32(str_off),
		.sh_type = B32(SHT_STRTAB),
		.sh_flags = B32(SHF_STRINGS),
		.sh_addr = 0,
		.sh_offset = 0,
		.sh_size = 0,
		.sh_link = 0,
		.sh_info = 0,
		.sh_addralign = B32(1),
		.sh_entsize = 0,
	};

	// shstring table
	if (strtab_push(&linker->shstrtab, ".shstrtab", &str_off))
		return M_ERROR;

	linker->shstrtab_shidx = count;
	shdr[count++] = (Elf32_Shdr) {
		.sh_name = B32(str_off),
		.sh_type = B32(SHT_STRTAB),
		.sh_flags = B32(SHF_STRINGS),
		.sh_addr = 0,
		.sh_offset = 0,
		.sh_size = 0,
		.sh_link = 0,
		.sh_info = 0,
		.sh_addralign = B32(1),
		.sh_entsize = 0,
	};

	linker->shdr_len = count;
	return M_SUCCESS;
}

static int relocate_instruction_rela(struct linker *linker,
				     struct segment *seg,
				     Elf32_Rela *rel)
{
	/// get start of the segment part in bytes and the byte offset
	/// of this relocation in that segment part
	uint32_t off = B32(rel->r_offset);
	if (off > seg->size) {
		ERROR("invalid relocation in '%s'", seg->obj->name);
		return M_ERROR;
	}

	if (B32(rel->r_info) == 0) {
		WARNING("skiping empty relocation entry in '%s'", seg->name);
		return M_SUCCESS;
	}

	/// read the relocation entry
	uint8_t idx = B32(rel->r_info) >> 8;
	uint8_t typ = B32(rel->r_info) & 0xFF;
	int32_t add = B32(rel->r_addend);

	/// read the symbol from the relocation
	struct symbol_table *symtab = seg->reltab.symtab;
	if (idx >= symtab->len) {
		ERROR("invalid relocation in '%s'", seg->obj->name);
		return M_ERROR;
	}
	Elf32_Sym *sym = &symtab->syms[idx];

	char const *sym_name = symtab->strtab->data + B32(sym->st_name);
	if (B32(sym->st_name) >= symtab->strtab->len) {
		ERROR("symbol name out of bounds in '%s'", seg->obj->name);
		return M_ERROR;
	}

	// get the new sym for the new vaddr
	Elf32_Sym *new_sym = NULL;
	if (symtab_get(&linker->symtab, &new_sym, sym_name, seg->obj->index)) {
		ERROR("symbol '%s' undefined", sym_name);
		return M_ERROR;
	}

	/// get the segment that the symbol is in
	uint32_t sym_vaddr = B32(new_sym->st_value);
	uint32_t *ins_raw = (uint32_t *) &seg->bytes[off];

	union mips_instruction_data ins;
	ins.raw = B32(*ins_raw);

	uint32_t ins_vaddr = seg->new_vaddr + off;

	uint32_t vaddr_abs = sym_vaddr + add;
	 int32_t vaddr_rel = (vaddr_abs - ins_vaddr - 4) >> 2;
	bool warn = false;

	switch (typ) {
	case R_MIPS_16:
		// 16bit absolute
		if (vaddr_abs > UINT16_MAX)
			warn = true;
		ins.immd += (uint16_t)vaddr_abs;
		break;
	case R_MIPS_PC16:
		// 16bit relative shifted
		if (vaddr_rel > INT16_MAX || vaddr_rel < INT16_MIN)
			warn = true;
		ins.offset += vaddr_rel;
		break;
	case R_MIPS_26:
	case R_MIPS_JALR:
		// 26bit absolute shifted
		if (vaddr_abs >= (1 << 25))
			warn = true;
		ins.target += (vaddr_abs & 0x0FFFFFFF) >> 2;
		break;
	case R_MIPS_PC26_S2:
		// 26bit relative shifted
		if (vaddr_rel >= (1 << 24) || -vaddr_rel > (1 << 24))
			warn = true;
		ins.offs26 += vaddr_rel;
		break;
	case R_MIPS_LO16:
		// lo 16bit absolute
		ins.immd += (uint16_t)(vaddr_abs & 0xFFFF);
		break;
	case R_MIPS_HI16:
		// hi 16bit absolute
		ins.immd += (uint16_t)(vaddr_abs >> 16);
		break;
	case R_MIPS_32:
		// 32bit absolute
		ins.raw = vaddr_abs;
		break;
	default:
		ERROR("do not know how do handle relocation type [%d]", typ);
		return M_ERROR;
	}

	*ins_raw = B32(ins.raw);

	if (warn)
		WARNING("truncating relocation for symbol '%s'", sym_name);

	return M_SUCCESS;

}

static int relocate_instruction_rel(struct linker *linker,
				    struct segment *seg,
				    Elf32_Rel *rel)
{
	Elf32_Rela temp;
	temp.r_info = rel->r_info;
	temp.r_offset = rel->r_offset;
	temp.r_addend = 0;

	return relocate_instruction_rela(linker, seg, &temp);
}

static int relocate_segment_instructions(struct linker *linker,
					 struct segment *seg)
{
	for (uint32_t i = 0; i < seg->reltab.len; i++) {
		int res = M_SUCCESS;
		if (seg->reltab.type == SHT_RELA)
			res = relocate_instruction_rela(linker, seg,
				   &seg->reltab.rela[i]);
		else if (seg->reltab.type == SHT_REL)
			res = relocate_instruction_rel(linker, seg,
				   &seg->reltab.rel[i]);
		else {
			ERROR("unknown reltab type");
			return M_ERROR;
		}
		if (res)
			return M_ERROR;
	}
	return M_SUCCESS;
}

static int relocate_instructions(struct linker *linker)
{
	for (uint32_t i = 0; i < linker->segments.len; i++) {
		struct segment_table_entry *ent = &linker->segments.entries[i];
		for (uint32_t j = 0; j < ent->len; j++) {
			struct segment *seg = ent->parts[j];
			if (relocate_segment_instructions(linker, seg))
				return M_ERROR;
		}
	}
	return M_SUCCESS;
}

static void update_offsets(struct linker *linker)
{
	uint32_t ptr = 0;

	// we must now correct offsets and sizes in side the ehdr, phdr,
	// and shdr
	ptr += sizeof(Elf32_Ehdr);

	// phdr
	linker->ehdr.e_phoff = B32(ptr);
	ptr += linker->phdr_len * sizeof(Elf32_Phdr);

	// sections
	for (uint32_t i = 0; i < linker->segments.len; i++) {
		struct segment_table_entry *ent = &linker->segments.entries[i];

		// section padding
		{
			uint32_t m = ptr % SEC_ALIGN;
			if (m) {
				uint32_t add = SEC_ALIGN - m;
				ptr += add;
				ent->off = ptr;
				ent->padding = add;
			} else {
				ent->padding = 0;
			}
		}

		uint32_t idx = i + 1;
		uint32_t size = segtab_ent_size(ent);
		linker->phdr[i].p_offset = B32(ptr);
		linker->shdr[idx].sh_offset = linker->phdr[i].p_offset;
		ptr += size;
	}

	// symtab
	Elf32_Shdr *symtab = &linker->shdr[linker->symtab_shidx];
	symtab->sh_offset = B32(ptr);
	symtab->sh_link = B32(linker->strtab_shidx);
	symtab->sh_size = B32(linker->symtab.len * sizeof(Elf32_Sym));
	ptr += B32(symtab->sh_size);

	// strtab
	Elf32_Shdr *strtab = &linker->shdr[linker->strtab_shidx];
	strtab->sh_offset = B32(ptr);
	strtab->sh_size = B32(linker->strtab.len);
	ptr += linker->strtab.len;

	// shstrtab
	Elf32_Shdr *shstrtab = &linker->shdr[linker->shstrtab_shidx];
	shstrtab->sh_offset = B32(ptr);
	shstrtab->sh_size = B32(linker->shstrtab.len);
	ptr += linker->shstrtab.len;

	// shdr
	linker->ehdr.e_shoff = B32(ptr);
}

static int write_file(struct linker *linker)
{
	int fd = open(linker->args->out_file, O_RDWR | O_CREAT, 0711);
	if (fd < 0) {
		PERROR("cannot write");
		return M_ERROR;
	}

	FILE *out = fdopen(fd, "w");
	if (out == NULL) {
		PERROR("cannot write");
		return M_ERROR;
	}

	int res = 0;

	// ehdr
	res |= fwrite(&linker->ehdr, sizeof(Elf32_Ehdr), 1, out);

	// phdr
	res |= fwrite(linker->phdr, sizeof(Elf32_Phdr), linker->phdr_len, out);

	// sections
	for (uint32_t i = 0; i < linker->segments.len; i++) {
		struct segment_table_entry *ent = &linker->segments.entries[i];
		// section padding
		{
			for (uint32_t i = 0; i < ent->padding; i++) {
				uint8_t zero = 0;
				res |= fwrite(&zero, 1, 1, out);
			}
		}
		for (uint32_t j = 0; j < ent->len; j++) {
			struct segment *seg = ent->parts[j];
			res |= fwrite(seg->bytes, 1, seg->size, out);
		}
	}

	// sym tbl
	res |= fwrite(linker->symtab.syms, sizeof(Elf32_Sym), linker->symtab.len, out);

	// str tbl
	res |= fwrite(linker->strtab.data, 1, linker->strtab.len, out);

	// shstr tbl
	res |= fwrite(linker->shstrtab.data, 1, linker->shstrtab.len, out);

	// shdr
	res |= fwrite(linker->shdr, sizeof(Elf32_Shdr), linker->shdr_len, out);

	if (res < 0) {
		ERROR("cannot write data");
		return M_ERROR;
	}

	fclose(out);

	return M_SUCCESS;
}

static int link_executable(struct linker *linker)
{
	Elf32_Ehdr *ehdr = &linker->ehdr;
	*ehdr = MIPS_ELF_EHDR;

	if (assemble_phdr(linker))
		return M_ERROR;

	if (assemble_shdr(linker))
		return M_ERROR;

	ehdr->e_type = B16(ET_EXEC);
	ehdr->e_phnum = B16(linker->phdr_len);
	ehdr->e_shnum = B16(linker->shdr_len);
	ehdr->e_shstrndx = B16(linker->shstrtab_shidx);

	Elf32_Sym *entry = NULL;
	if (symtab_get(&linker->symtab, &entry, "_start", -1)) {
		ERROR("undefined symbol _start");
		return M_ERROR;
	}

	// BE to BE, no endiness conversion needed
	ehdr->e_entry = entry->st_value;

	update_offsets(linker);

	if (write_file(linker))
		return M_ERROR;

	return M_SUCCESS;
}

static int linker_init(struct linker *linker, struct linker_arguments *args)
{
	linker->args = args;
	linker->off = 0;
	linker->text_vaddr = TEXT_VADDR_MIN;
	linker->data_vaddr = DATA_VADDR_MIN;
	linker->objects = NULL;
	linker->segments.size = 0;
	linker->symtab.syms = NULL;
	linker->symtab_map.meta = NULL;
	linker->shstrtab.data = NULL;
	linker->strtab.data = NULL;
	linker->shdr = NULL;
	linker->phdr = NULL;
	if (segtab_init(&linker->segments))
		return M_ERROR;
	if (strtab_init(&linker->shstrtab))
		return M_ERROR;
	if (strtab_init(&linker->strtab))
		return M_ERROR;
	if (symtab_init(&linker->symtab))
		return M_ERROR;
	if (symtab_map_init(&linker->symtab_map))
		return M_ERROR;
	linker->symtab.strtab = &linker->strtab;
	linker->symtab.map = &linker->symtab_map;
	return M_SUCCESS;
}

static void linker_free(struct linker *linker)
{
	if (linker->objects != NULL) {
		for (size_t i = 0; i < linker->obj_len; i++)
			object_free(&linker->objects[i]);
		free(linker->objects);
	}
	if (linker->shdr != NULL)
		free(linker->shdr);
	if (linker->phdr != NULL)
		free(linker->phdr);
	segtab_free(&linker->segments);
	strtab_free(&linker->shstrtab);
	strtab_free(&linker->strtab);
	symtab_free(&linker->symtab);
	symtab_map_free(&linker->symtab_map);
}

int link_files(struct linker_arguments args) {
	struct linker linker;
	extern char *current_file;


	int res = M_SUCCESS;
	if (res == M_SUCCESS)
		res = linker_init(&linker, &args);
	if (res == M_SUCCESS)
		res = load_objects(&linker);

	current_file = args.out_file;
	if (res == M_SUCCESS)
		res = relocate_segments(&linker);
	if (res == M_SUCCESS)
		res = relocate_symbols(&linker);
	if (res == M_SUCCESS)
		res = relocate_instructions(&linker);
	if (res == M_SUCCESS)
		res = link_executable(&linker);

	linker_free(&linker);
	return res;
}