summaryrefslogtreecommitdiff
path: root/engine/xe_render_system.cpp
blob: e5954c7ebdb5eb207b99c4228f7a929131b685ec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
#include "xe_render_system.hpp"

namespace xe {

XeRenderSystem::XeRenderSystem(
  XeEngine &xeEngine,
  std::string vert,
  std::string frag,
  std::map<uint32_t, uint32_t> uniformBindings,
  std::map<uint32_t, XeImage*> imageBindings,
  uint32_t pushCunstantDataSize,
  bool cullingEnabled
) : xeDevice{xeEngine.xeDevice}, 
    xeRenderer{xeEngine.xeRenderer},
    xeDescriptorPool{xeEngine.xeDescriptorPool},
    pushCunstantDataSize{pushCunstantDataSize},
    uniformBindings{uniformBindings},
    imageBindings{imageBindings} {
  createTextureSampler();
  createDescriptorSetLayout();
  createUniformBuffers();
  createDescriptorSets();
  createPipelineLayout();
  createPipeline(xeRenderer.getSwapChainRenderPass(), vert, frag, cullingEnabled);
}


XeRenderSystem::~XeRenderSystem() {
  vkDestroyPipelineLayout(xeDevice.device(), pipelineLayout, nullptr);
  vkDestroySampler(xeDevice.device(), textureSampler, nullptr);
};

void XeRenderSystem::createTextureSampler() {
  VkSamplerCreateInfo samplerInfo{};
  samplerInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
  samplerInfo.magFilter = VK_FILTER_LINEAR;
  samplerInfo.minFilter = VK_FILTER_LINEAR;
  samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
  samplerInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
  samplerInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
  samplerInfo.anisotropyEnable = VK_FALSE;
  samplerInfo.borderColor = VK_BORDER_COLOR_INT_OPAQUE_BLACK;
  samplerInfo.unnormalizedCoordinates = VK_FALSE;
  samplerInfo.compareEnable = VK_FALSE;
  samplerInfo.compareOp = VK_COMPARE_OP_ALWAYS;
  samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
  samplerInfo.mipLodBias = 0.0f;
  samplerInfo.minLod = 0.0f;
  samplerInfo.maxLod = 0.0f;

  if (vkCreateSampler(xeDevice.device(), &samplerInfo, nullptr, &textureSampler) != VK_SUCCESS) {
    throw std::runtime_error("failed to create texture sampler!");
  }
}

void XeRenderSystem::createDescriptorSetLayout() {
  XeDescriptorSetLayout::Builder builder{xeDevice};
  
  for ( const auto &[binding, size]: uniformBindings) {
    builder.addBinding(binding, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, nullptr);
  }

  for ( const auto &[binding, image]: imageBindings) {
    builder.addBinding(binding, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, &textureSampler);
  }

  xeDescriptorSetLayout = builder.build();
}

void XeRenderSystem::createUniformBuffers() {
  for ( const auto &[binding, bufferSize]: uniformBindings) {
    uboBuffers[binding] = std::vector<std::unique_ptr<XeBuffer>>(XeSwapChain::MAX_FRAMES_IN_FLIGHT);
    for (int i = 0; i < uboBuffers[binding].size(); i++) {
      uboBuffers[binding][i] = std::make_unique<XeBuffer>(
        xeDevice,
        bufferSize,
        XeSwapChain::MAX_FRAMES_IN_FLIGHT,
        VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
        VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
      uboBuffers[binding][i]->map();
    }
  }
}

void XeRenderSystem::createDescriptorSets() {

  descriptorSets = std::vector<VkDescriptorSet>(XeSwapChain::MAX_FRAMES_IN_FLIGHT);
  for (int i = 0; i < descriptorSets.size(); i++) {
    updateDescriptorSet(i, true);
  }

}

void XeRenderSystem::updateDescriptorSet(int frameIndex, bool allocate) {

  XeDescriptorWriter writer{*xeDescriptorSetLayout, *xeDescriptorPool};

  std::vector<VkDescriptorBufferInfo> bufferInfos{};

  int i = 0;
  for ( const auto &[binding, size]: uniformBindings) {
    bufferInfos.push_back(uboBuffers[binding][frameIndex]->descriptorInfo());
    writer.writeBuffer(binding, &bufferInfos[i]);
    i++;
  }

  for ( const auto &[binding, image]: imageBindings) {
    VkDescriptorImageInfo imageInfo{};
    imageInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
    imageInfo.imageView = image->textureImageView;
    imageInfo.sampler = textureSampler;
    writer.writeImage(binding, &imageInfo);
  }

  if (allocate) {
    writer.build(descriptorSets[frameIndex]);
  } else {
    writer.overwrite(descriptorSets[frameIndex]);
  }
    
}


void XeRenderSystem::createPipelineLayout() {

  VkPushConstantRange pushConstantRange;
  pushConstantRange.stageFlags = VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT;
  pushConstantRange.offset = 0;
  pushConstantRange.size = pushCunstantDataSize;

  std::vector<VkDescriptorSetLayout> descriptorSetLayouts{xeDescriptorSetLayout->getDescriptorSetLayout()};

  VkPipelineLayoutCreateInfo pipelineLayoutInfo{};
  pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
  pipelineLayoutInfo.setLayoutCount = static_cast<uint32_t>(descriptorSetLayouts.size());
  pipelineLayoutInfo.pSetLayouts = descriptorSetLayouts.data();

  if (pushCunstantDataSize > 0) {
    pipelineLayoutInfo.pushConstantRangeCount = 1;
    pipelineLayoutInfo.pPushConstantRanges = &pushConstantRange;
  } else {
    pipelineLayoutInfo.pushConstantRangeCount = 0;
    pipelineLayoutInfo.pPushConstantRanges = nullptr;
  }

  if(vkCreatePipelineLayout(xeDevice.device(), &pipelineLayoutInfo, nullptr, &pipelineLayout) != VK_SUCCESS) {
    std::runtime_error("failed to create pipeline layout!");
  }

}


void XeRenderSystem::createPipeline(VkRenderPass renderPass, std::string vert, std::string frag, bool cullingEnabled) {
  assert(pipelineLayout != nullptr && "Cannot create pipeline before pipeline layout");

  PipelineConfigInfo pipelineConfig{};
  XePipeline::defaultPipelineConfigInfo(pipelineConfig);
  if (cullingEnabled) {
    pipelineConfig.rasterizationInfo.cullMode = VK_CULL_MODE_BACK_BIT;
  }
  pipelineConfig.renderPass = renderPass;
  pipelineConfig.pipelineLayout = pipelineLayout;
  xePipeline = std::make_unique<XePipeline>(
    xeDevice,
    vert,
    frag,
    pipelineConfig
  );
}

void XeRenderSystem::start() {
  xeRenderer.beginSwapChainRenderPass(xeRenderer.getCurrentCommandBuffer());
  xePipeline->bind(xeRenderer.getCurrentCommandBuffer());
  if(descriptorSets.size() > 0) {

    vkCmdBindDescriptorSets(
        xeRenderer.getCurrentCommandBuffer(),
        VK_PIPELINE_BIND_POINT_GRAPHICS,
        pipelineLayout,
        0,
        1,
        &descriptorSets[xeRenderer.getFrameIndex()],
        0,
        nullptr);

  }
}

void XeRenderSystem::loadPushConstant(void *pushConstantData) {
  vkCmdPushConstants(
        xeRenderer.getCurrentCommandBuffer(), 
        pipelineLayout, 
        VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 
        0, 
        pushCunstantDataSize,
        pushConstantData);
}

void XeRenderSystem::loadUniformObject(uint32_t binding, void *uniformBufferData) {
  uboBuffers[binding][xeRenderer.getFrameIndex()]->writeToBuffer(uniformBufferData);
}

void XeRenderSystem::loadTexture(uint32_t binding, XeImage *image) {
  imageBindings[binding] = image;
  updateDescriptorSet(xeRenderer.getFrameIndex(), false);
}

void XeRenderSystem::render(XeGameObject &gameObject) {

  gameObject.model->bind(xeRenderer.getCurrentCommandBuffer());
  gameObject.model->draw(xeRenderer.getCurrentCommandBuffer());

}

void XeRenderSystem::stop() {
  xeRenderer.endSwapChainRenderPass(xeRenderer.getCurrentCommandBuffer());
}

}