1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
|
#include "xe_model.hpp"
#include "xe_engine.hpp"
#define TINYOBJLOADER_IMPLEMENTATION
#include "xe_obj_loader.hpp"
#define GLM_ENABLE_EXPERIMENTAL
#include <glm/gtx/hash.hpp>
#include <cassert>
#include <cstring>
#include <unordered_map>
#include <iostream>
namespace xe {
//
// CONSTRUCTORS AND DECONSTUCTORS
//
Model::Model(const Model::Builder &builder) : xeDevice{Engine::getInstance()->xeDevice} {
createVertexBuffers(builder.vertexData.data, builder.vertexSize);
createIndexBuffers(builder.indices);
}
Model::~Model() {}
//
// LOADERS AND DELETORS
//
static std::set<Model*> CREATED_MODELS{};
static std::set<Model*> DELETION_QUEUE{};
Model* Model::createModel(const std::string &filepath) {
Builder builder{};
builder.loadModel(filepath);
return createModel(builder);
}
Model* Model::createModel(Builder& builder) {
Model* model = new Model(builder);
CREATED_MODELS.insert(model);
return model;
}
void Model::deleteModel(Model* model) {
if(CREATED_MODELS.count(model)) {
CREATED_MODELS.erase(model);
DELETION_QUEUE.insert(model);
}
}
void Model::submitDeleteQueue(bool purge) {
vkDeviceWaitIdle(Engine::getInstance()->xeDevice.device());
for(Model* model: DELETION_QUEUE) {
try { delete model; } catch(int err) {};
}
DELETION_QUEUE.clear();
if (purge) {
for(Model* model: CREATED_MODELS) {
try { delete model; } catch(int err) {};
}
CREATED_MODELS.clear();
}
}
//
// MODEL CREATION FUNCTIONS
//
void Model::createVertexBuffers(const std::vector<unsigned char> &vertexData, uint32_t vertexSize) {
vertexCount = static_cast<uint32_t>(vertexData.size()) / vertexSize;
assert(vertexCount >= 3 && "Vertex count must be atleast 3");
VkDeviceSize bufferSize = vertexData.size();
Buffer stagingBuffer {
xeDevice,
vertexSize,
vertexCount,
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT
};
stagingBuffer.map();
stagingBuffer.writeToBuffer((void *)vertexData.data());
vertexBuffer = std::make_unique<Buffer>(
xeDevice,
vertexSize,
vertexCount,
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT
);
xeDevice.copyBuffer(stagingBuffer.getBuffer(), vertexBuffer->getBuffer(), bufferSize);
}
void Model::createIndexBuffers(const std::vector<uint32_t> &indexData) {
indexCount = static_cast<uint32_t>(indexData.size());
hasIndexBuffer = indexCount > 0;
if (!hasIndexBuffer) {
return;
}
VkDeviceSize bufferSize = sizeof(indexData[0]) * indexCount;
uint32_t indexSize = sizeof(indexData[0]);
Buffer stagingBuffer {
xeDevice,
indexSize,
indexCount,
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT
};
stagingBuffer.map();
stagingBuffer.writeToBuffer((void *)indexData.data());
indexBuffer = std::make_unique<Buffer>(
xeDevice,
indexSize,
indexCount,
VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT
);
xeDevice.copyBuffer(stagingBuffer.getBuffer(), indexBuffer->getBuffer(), bufferSize);
}
void Model::bind(VkCommandBuffer commandBuffer) {
VkBuffer buffers[] = {vertexBuffer->getBuffer()};
VkDeviceSize offsets[] = {0};
vkCmdBindVertexBuffers(commandBuffer, 0, 1, buffers, offsets);
if (hasIndexBuffer) {
vkCmdBindIndexBuffer(commandBuffer, indexBuffer->getBuffer(), 0, VK_INDEX_TYPE_UINT32);
}
}
void Model::draw(VkCommandBuffer commandBuffer) {
if (hasIndexBuffer) {
vkCmdDrawIndexed(commandBuffer, indexCount, 1, 0, 0, 0);
} else {
vkCmdDraw(commandBuffer, vertexCount, 1, 0, 0);
}
}
void Model::Builder::loadModel(const std::string &filepath) {
tinyobj::attrib_t attrib;
std::vector<tinyobj::shape_t> shapes;
std::vector<tinyobj::material_t> materials;
std::string warn, err;
if (!tinyobj::LoadObj(&attrib, &shapes, &materials, &warn, &err, filepath.c_str())) {
throw std::runtime_error(warn + err);
}
vertexData.data.clear();
indices.clear();
vertexSize = 0;
bool vertex, normal, uvs;
for (const auto &shape : shapes) {
for (const auto &index : shape.mesh.indices) {
if(index.vertex_index >= 0) {
vertexData.write<float>(attrib.vertices[3 * index.vertex_index + 0]);
vertexData.write<float>(attrib.vertices[3 * index.vertex_index + 1]);
vertexData.write<float>(attrib.vertices[3 * index.vertex_index + 2]);
vertex = true;
}
if(index.normal_index >= 0) {
vertexData.write<float>(attrib.normals[3 * index.normal_index + 0]);
vertexData.write<float>(attrib.normals[3 * index.normal_index + 1]);
vertexData.write<float>(attrib.normals[3 * index.normal_index + 2]);
normal = true;
}
if(index.texcoord_index >= 0) {
vertexData.write<float>(attrib.texcoords[2 * index.texcoord_index + 0]);
vertexData.write<float>(attrib.texcoords[2 * index.texcoord_index + 1]);
uvs = true;
}
}
}
if(vertex)
vertexSize += 12;
if(normal)
vertexSize += 12;
if(uvs)
vertexSize += 8;
}
}
|