1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
|
use std::cmp::Ordering;
use crate::prelude::*;
macro_rules! error {
($($arg:tt)*) => {
Err(exception!(VALUE_EXCEPTION, $($arg)*))
};
}
impl Value {
pub fn val_cmp(&self, other: &Self) -> Result<Ordering> {
self.partial_cmp(other)
.map_or_else(|| error!("cannot compare: {self:?} and {other:?}"), Ok)
}
fn index_single(&self, index: &Value) -> Result<Self> {
use Value as V;
match (self, index) {
(V::Table(t), index) => {
Ok(t.get(index)?.unwrap_or(&Value::Nil).clone())
},
(V::List(l), V::Int(i)) => {
if *i < 0 || *i as usize >= l.len() {
return error!("{i} out of bounds for {self:?}")
}
Ok(l[*i as usize].clone())
},
(V::Matrix(m), V::Int(i)) => {
if *i < 0 || *i as usize >= m.values.len() {
return error!("{i} out of bounds for {self:?}")
}
Ok(m.values[*i as usize].clone())
},
_ => return error!("{index:?} cant index {self:?}")
}
}
fn index_multiple(&self, indexes: &Vec<Value>) -> Result<Self> {
use Value as V;
match self {
V::List(..) => {
let mut ret = Vec::new();
for index in indexes {
let res = self.index_single(index)?;
ret.push(res);
}
Ok(V::List(ret.into()))
}
V::Table(..) => {
let mut ret = ValueMap::new();
for index in indexes {
let res = self.index_single(index)?;
ret.insert(index.clone(), res)?;
}
Ok(V::Table(ret.into()))
}
V::Matrix(m) => {
let err = || error!("{self:?} can be index by [Int] or [Int;Int]");
if indexes.len() != 2 {
return err()
}
let lhs = indexes[0].clone();
let rhs = indexes[1].clone();
match (lhs, rhs) {
(V::Nil, V::Nil) => {
Ok(V::Matrix(m.shallow_clone()))
},
(V::Int(row), V::Nil) => {
let Some((_, row)) = m.rows().enumerate().filter(|(idx, _)| *idx as i64 == row).next() else {
return err();
};
let row: Vec<Value> = row.into_iter().map(|e| e.clone()).collect();
Ok(V::Matrix(Matrix::new(row.len(), 1, row).into()))
},
(V::Nil, V::Int(col)) => {
let Some((_, col)) = m.cols().enumerate().filter(|(idx, _)| *idx as i64 == col).next() else {
return err();
};
let col: Vec<Value> = col.into_iter().map(|e| e.clone()).collect();
Ok(V::Matrix(Matrix::new(1, col.len(), col).into()))
},
(V::Int(row), V::Int(col)) => {
if row < 0 || col < 0 {
return err();
}
m.get(row as usize, col as usize)
}
_ => return err()
}
}
_ => return error!("cannot index {self:?}")
}
}
pub fn index(&self, index: &Vec<Value>) -> Result<Self> {
if index.len() == 0 {
Ok(self.shallow_clone())
} else if index.len() == 1 {
self.index_single(&index[0])
} else {
self.index_multiple(index)
}
}
fn store_index_single(&mut self, index: &Value, store: Value) -> Result<()> {
use Value as V;
let err = format!("{self:?}");
match (self, index) {
(V::Table(t), index) => {
t.insert(index.clone(), store)
},
(V::List(l), V::Int(i)) => {
if *i < 0 || *i as usize >= l.len() {
return error!("{i} out of bounds for {err}")
}
l[*i as usize] = store;
Ok(())
},
(V::Matrix(m), V::Int(i)) => {
if *i < 0 || *i as usize >= m.values.len() {
return error!("{i} out of bounds for {err}")
}
m.values[*i as usize] = store;
Ok(())
},
_ => return error!("{index:?} cant index {err}")
}
}
fn store_index_multiple(&mut self, indexes: &Vec<Value>, store: Value) -> Result<()> {
use Value as V;
match self {
V::List(..) => {
for index in indexes {
self.store_index_single(index, store.clone())?;
}
Ok(())
}
V::Table(..) => {
for index in indexes {
self.store_index_single(index, store.clone())?;
}
Ok(())
}
_ => return error!("cannot index {self:?}")
}
}
pub fn store_index(&mut self, index: &Vec<Value>, store: Value) -> Result<()> {
if index.len() == 0 {
Ok(())
} else if index.len() == 1 {
self.store_index_single(&index[0], store)
} else {
self.store_index_multiple(index, store)
}
}
pub fn store_field_access(&mut self, ident: &str, val: Value) -> Result<()> {
use Value as V;
match self {
V::Table(t) => {
let key = V::String(Rc::from(ident));
Ok(t.insert(key, val)?)
},
_ => return error!("cannot field access assign {self:?}")
}
}
pub fn field_access(&self, ident: &str) -> Result<Self> {
use Value as V;
match self {
V::Table(t) => {
let key = V::String(Rc::from(ident));
Ok(t.get(&key)?.unwrap_or(&V::Nil).clone())
},
_ => return error!("cannot field access {self:?}")
}
}
}
impl Value {
pub fn into_iter_fn(self) -> Result<Rc<Function>> {
let Value::Iter(iter) = self.into_iter()? else {
return error!("bypassed iter check")
};
Ok(iter)
}
pub fn into_iter(self) -> Result<Self> {
use Value as V;
Ok(match self {
V::Iter(..) => self,
V::List(l) => {
let iter = RefCell::new(l.into_inner().into_iter());
iter!(move |_,_| {
match iter.borrow_mut().next() {
Some(v) => Ok(v),
None => Ok(V::Nil),
}
})
},
V::Range(r) => {
let r = (*r).clone();
let lhs = RefCell::new(r.0);
let rhs = r.1;
iter!(move |_,_| {
let val = *lhs.borrow();
let next = *lhs.borrow() + 1;
if (!r.2 && *lhs.borrow() < rhs) || (r.2 && *lhs.borrow() <= rhs) {
*lhs.borrow_mut() = next;
return Ok(Value::Int(val))
}
Ok(Value::Nil)
})
},
V::Function(f) => {
if f.arity > 0 || f.variadic {
return error!("iterator functions cannot be varadic or take arguments")
}
V::Iter(f)
},
val => return error!("cannot turn {val:?} into an iterator")
})
}
}
|