1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
|
#include <memory.h>
#include <stdint.h>
#include <lib.h>
#include <stddef.h>
#define MEMORY_INTERNAL
#include <memory/physalloc.h>
#include <memory/virtalloc.h>
extern char kernel_start;
extern char kernel_end;
#define kaddr(addr) ((uintptr_t)(&addr))
// between memory_start and kernel_start will be the bitmap
static uintptr_t memory_start = 0;
struct memory_area {
uint64_t len;
uintptr_t addr;
};
static uint64_t *bitmap;
static uint64_t total_memory;
static uint64_t free_memory;
static uint64_t page_count;
static uint64_t segment_count;
struct memory_area *page_start;
static int n_pages(const struct memory_area *m) {
return m->len / PAGE_SIZE;
}
static void *page_at(int i) {
int cur_page = 0;
for (uint64_t idx = 0; idx < segment_count; idx++) {
const struct memory_area *m = page_start;
int pages = n_pages(m);
if (i - cur_page < pages) {
return (void *) (m->addr + (PAGE_SIZE * (i - cur_page)));
}
cur_page += pages;
}
return NULL;
}
static long page_idx(void *page) {
uintptr_t addr = (uintptr_t) page;
int cur_page = 0;
for (uint64_t idx = 0; idx < segment_count; idx++) {
const struct memory_area *m = page_start;
if ((uintptr_t) m + m->len > addr) {
return cur_page + ((addr - m->addr) / PAGE_SIZE);
}
cur_page += n_pages(m);
}
return -1;
}
static inline bool bitmap_get(int i) {
return (bitmap[i / 64] >> i % 64) & 1;
}
static inline void bitmap_set(int i, bool v) {
if (v)
free_memory -= PAGE_SIZE;
else
free_memory += PAGE_SIZE;
int idx = i / 64;
bitmap[idx] &= ~(1 << i % 64);
bitmap[idx] |= (v << i % 64);
}
void *alloc_phys_page(void) {
return alloc_phys_pages(1);
}
void *alloc_phys_pages(int pages) {
if (pages < 1) return NULL;
int n_contiguous = 0;
int free_region_start = 0;
for (uint64_t i = 0; i < page_count; i++) {
bool free = !bitmap_get(i);
if (free) {
if (n_contiguous == 0) free_region_start = i;
n_contiguous++;
if (n_contiguous == pages) {
for (int j = 0; j < pages; j++)
bitmap_set(free_region_start + j, true);
return page_at(free_region_start);
}
} else n_contiguous = 0;
}
return NULL;
}
void free_phys_page(void *ptr) {
free_phys_pages(ptr, 1);
}
void free_phys_pages(void *ptr, int pages) {
long idx = page_idx(ptr);
if (idx == -1) return;
for (int i = 0; i < pages; i++)
bitmap_set(idx + pages, false);
}
static bool segment_invalid(const struct memory_segment *segment) {
if (segment->addr < kaddr(kernel_start)) return true;
if (segment->addr + segment->len < memory_start) return true;
if (segment->addr + segment->len < kaddr(kernel_start)) return true;
return false;
}
static struct memory_area segment_to_area(const struct memory_segment *segment) {
uint64_t length = segment->len;
uintptr_t addr = segment->addr;
uintptr_t start;
if (memory_start)
start = memory_start;
else
start = kaddr(kernel_end);
if (segment->addr < start) {
addr = start;
length -= addr - segment->addr;
} else {
addr = segment->addr;
}
struct memory_area temp;
temp.len = length;
temp.addr = addr;
return temp;
}
static uintptr_t page_align(uintptr_t ptr) {
return (ptr + PAGE_SIZE - 1) / PAGE_SIZE * PAGE_SIZE;
}
void memory_init(struct memory_map *map) {
memory_lock();
virtaddr_init();
bitmap = NULL;
total_memory = 0;
free_memory = 0;
page_count = 0;
page_start = NULL;
segment_count = 0;
for (uint32_t i = 0; i < map->entry_count; i++) {
struct memory_segment *segment = &map->entries[i];
if (segment_invalid(segment))
continue;
struct memory_area temp = segment_to_area(segment);
page_count += n_pages(&temp);
segment_count++;
}
long bitmap_pages = (page_count / 64 / PAGE_SIZE) + 1;
long bitmap_size = bitmap_pages * PAGE_SIZE;
bitmap = (uint64_t *) page_align(kaddr(kernel_end));
long page_area_size = segment_count * sizeof(struct memory_area);
char *page_area_addr = (char *)bitmap + bitmap_size;
page_area_addr = (char *) page_align((uintptr_t) page_area_addr);
memory_start = page_align((uintptr_t)page_area_addr + page_area_size);
bitmap = mmap(bitmap, bitmap_size);
memset(bitmap, 0, bitmap_size);
page_area_addr = mmap(page_area_addr, page_area_size);
memset(page_area_addr, 0, page_area_size);
page_start = (struct memory_area *) page_area_addr;
struct memory_area *area = page_start;
for (uint32_t i = 0; i < map->entry_count; i++) {
struct memory_segment *segment = &map->entries[i];
if (segment_invalid(segment))
continue;
struct memory_area temp = segment_to_area(segment);
*area = temp;
area++;
}
total_memory = page_count * PAGE_SIZE;
page_count -= bitmap_pages;
free_memory = page_count * PAGE_SIZE;
char buf[20];
kprintf("\nMEMORY USAGE\n");
kprintf("mem total: %s\n", btoa(memory_total(), buf));
kprintf("mem free: %s\n", btoa(memory_free(), buf));
kprintf("mem used: %s\n\n", btoa(memory_used(), buf));
memory_unlock();
}
void *alloc_page(void) {
return alloc_pages(1);
}
uint64_t memory_total(void) {
return total_memory;
}
uint64_t memory_free(void) {
return free_memory;
}
uint64_t memory_used(void) {
return total_memory - free_memory;
}
|