summaryrefslogtreecommitdiff
path: root/kernel/user.c
blob: 9d933e531aecf9782ebc0537d27e6bc2586b590d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#include <comus/fs.h>
#include <comus/procs.h>
#include <comus/memory.h>
#include <comus/user.h>
#include <elf.h>

/// FIXME: the following code is using direct
/// disk access instead of file access, this is
/// because filesystems are not yet implemented.
/// This MUST be changed once we have files.
/// - Freya

#define USER_STACK_TOP 0x800000000000
#define USER_STACK_LEN (4 * PAGE_SIZE)

#define BLOCK_SIZE (PAGE_SIZE * 1000)
static uint8_t *load_buffer = NULL;

static int user_load_segment(struct pcb *pcb, struct disk *disk, int idx)
{
	Elf64_Phdr hdr;
	size_t mem_bytes, mem_pages;
	size_t file_bytes, file_pages;
	uint8_t *mapADDR;

	hdr = pcb->elf_segments[idx];

	// return if this is not a lodable segment
	if (hdr.p_type != PT_LOAD)
		return 0;

	mem_bytes = hdr.p_memsz;
	file_bytes = hdr.p_filesz;

	// we cannot read more data to less memory
	if (file_bytes > mem_bytes)
		return 1;

	mem_pages = (mem_bytes + PAGE_SIZE - 1) / PAGE_SIZE;
	file_pages = (file_bytes + PAGE_SIZE - 1) / PAGE_SIZE;

	// return if were reading no data
	if (file_pages < 1)
		return 0;

	// allocate memory in user process
	if (mem_alloc_pages_at(pcb->memctx, mem_pages, (void *)hdr.p_vaddr,
						   F_WRITEABLE | F_UNPRIVILEGED) == NULL)
		return 1;

	mapADDR = kmapuseraddr(pcb->memctx, (void *)hdr.p_vaddr, mem_bytes);
	if (mapADDR == NULL)
		return 1;

	// load data
	size_t total_read = 0;
	while (total_read < file_bytes) {
		size_t read = BLOCK_SIZE;
		if (read > file_bytes - total_read)
			read = file_bytes - total_read;
		if ((read = disk_read(disk, hdr.p_offset + total_read, read,
							  load_buffer)) < 1) {
			kunmapaddr(mapADDR);
			return 1;
		}
		memcpyv(mapADDR + total_read, load_buffer, read);
		total_read += read;
	}

	kunmapaddr(mapADDR);
	return 0;
}

static int user_load_segments(struct pcb *pcb, struct disk *disk)
{
	int ret = 0;

	if (load_buffer == NULL)
		if ((load_buffer = kalloc(BLOCK_SIZE)) == NULL)
			return 1;

	for (int i = 0; i < pcb->n_elf_segments; i++)
		if ((ret = user_load_segment(pcb, disk, i)))
			return ret;
	return 0;
}

static int validate_elf_hdr(struct pcb *pcb)
{
	Elf64_Ehdr *ehdr = &pcb->elf_header;

	if (strncmp((const char *)ehdr->e_ident, ELFMAG, SELFMAG)) {
		WARN("Invalid ELF File.\n");
		return 1;
	}

	if (ehdr->e_ident[EI_CLASS] != ELFCLASS64) {
		WARN("Unsupported ELF Class.\n");
		return 1;
	}

	if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB) {
		ERROR("Unsupported ELF File byte order.\n");
		return 1;
	}

	if (ehdr->e_machine != EM_X86_64) {
		WARN("Unsupported ELF File target.\n");
		return 1;
	}

	if (ehdr->e_ident[EI_VERSION] != EV_CURRENT) {
		WARN("Unsupported ELF File version.\n");
		return 1;
	}

	if (ehdr->e_phnum > N_ELF_SEGMENTS) {
		WARN("Too many ELF segments.\n");
		return 1;
	}

	if (ehdr->e_type != ET_EXEC) {
		ERROR("Unsupported ELF File type.\n");
		return 1;
	}

	return 0;
}

static int user_load_elf(struct pcb *pcb, struct disk *disk)
{
	int ret = 0;

	ret = disk_read(disk, 0, sizeof(Elf64_Ehdr), &pcb->elf_header);
	if (ret < 0)
		return 1;

	if (validate_elf_hdr(pcb))
		return 1;

	pcb->n_elf_segments = pcb->elf_header.e_phnum;
	ret = disk_read(disk, pcb->elf_header.e_phoff,
					sizeof(Elf64_Phdr) * pcb->elf_header.e_phnum,
					&pcb->elf_segments);
	if (ret < 0)
		return 1;

	return 0;
}

static int user_setup_stack(struct pcb *pcb)
{
	// allocate stack
	if (mem_alloc_pages_at(pcb->memctx, USER_STACK_LEN / PAGE_SIZE,
						   (void *)(USER_STACK_TOP - USER_STACK_LEN),
						   F_WRITEABLE | F_UNPRIVILEGED) == NULL)
		return 1;

	// setup initial context save area
	pcb->regs = (struct cpu_regs *)(USER_STACK_TOP - sizeof(struct cpu_regs));
	mem_ctx_switch(pcb->memctx);
	memset(pcb->regs, 0, sizeof(struct cpu_regs));
	pcb->regs->rip = pcb->elf_header.e_entry;
	pcb->regs->cs = 0x18 | 3;
	pcb->regs->rflags = (1 << 9);
	pcb->regs->rsp = USER_STACK_TOP;
	pcb->regs->ss = 0x20 | 3;
	mem_ctx_switch(kernel_mem_ctx);

	return 0;
}

int user_load(struct pcb *pcb, struct disk *disk)
{
	// check inputs
	if (pcb == NULL || disk == NULL)
		return 1;

	pcb->regs = NULL;

	// allocate memory context
	pcb->memctx = mem_ctx_alloc();
	if (pcb->memctx == NULL)
		goto fail;

	// load elf information
	if (user_load_elf(pcb, disk))
		goto fail;

	// load segments into memory
	if (user_load_segments(pcb, disk))
		goto fail;

	// setup process stack
	if (user_setup_stack(pcb))
		goto fail;

	// success
	return 0;

fail:
	user_cleanup(pcb);
	return 1;
}

void user_cleanup(struct pcb *pcb)
{
	if (pcb == NULL)
		return;

	mem_ctx_free(pcb->memctx);
	pcb->memctx = NULL;
}