summaryrefslogtreecommitdiff
path: root/kernel/procs.c
blob: a8352b0596bea1fd2b80f3087b61bc7be1af3672 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
#include <comus/procs.h>
#include <comus/error.h>
#include <comus/cpu.h>
#include <comus/memory.h>

#define PCB_QUEUE_EMPTY(q) ((q)->head == NULL)

struct pcb_queue_s {
	struct pcb *head;
	struct pcb *tail;
	enum pcb_queue_order order;
};

// collection of queues
static struct pcb_queue_s pcb_freelist_queue;
static struct pcb_queue_s ready_queue;
static struct pcb_queue_s waiting_queue;
static struct pcb_queue_s sleeping_queue;
static struct pcb_queue_s zombie_queue;

// public facing queue handels
pcb_queue_t pcb_freelist;
pcb_queue_t ready;
pcb_queue_t waiting;
pcb_queue_t sleeping;
pcb_queue_t zombie;

// pointer to the currently-running process
struct pcb *current;

/// pointer to the currently-running process
struct pcb *current;

/// the process table
struct pcb ptable[N_PROCS];

/// next avaliable pid
pid_t next_pid;

/// pointer to the pcb for the 'init' process
struct pcb *init_pcb;

/// table of state name strings
const char *proc_state_str[N_PROC_STATES] = {
	[PROC_STATE_UNUSED] = "Unu",   [PROC_STATE_NEW] = "New",
	[PROC_STATE_READY] = "Rdy",	   [PROC_STATE_RUNNING] = "Run",
	[PROC_STATE_SLEEPING] = "Slp", [PROC_STATE_BLOCKED] = "Blk",
	[PROC_STATE_WAITING] = "Wat",  [PROC_STATE_KILLED] = "Kil",
	[PROC_STATE_ZOMBIE] = "Zom",
};

/// table of priority name strings
const char *proc_prio_str[N_PROC_PRIOS] = {
	[PROC_PRIO_HIGH] = "High",
	[PROC_PRIO_STD] = "User",
	[PROC_PRIO_LOW] = "Low ",
	[PROC_PRIO_DEFERRED] = "Def ",
};

/// table of queue ordering name strings
const char *pcb_ord_str[N_PCB_ORDERINGS] = {
	[O_PCB_FIFO] = "FIFO",
	[O_PCB_PRIO] = "PRIO",
	[O_PCB_PID] = "PID ",
	[O_PCB_WAKEUP] = "WAKE",
};

/**
 * Priority search functions. These are used to traverse a supplied
 * queue looking for the queue entry that would precede the supplied
 * PCB when that PCB is inserted into the queue.
 *
 * Variations:
 *     find_prev_wakeup()     compares wakeup times
 *     find_prev_priority()   compares process priorities
 *     find_prev_pid()        compares PIDs
 *
 * Each assumes the queue should be in ascending order by the specified
 * comparison value.
 *
 * @param[in] queue  The queue to search
 * @param[in] pcb    The PCB to look for
 *
 * @return a pointer to the predecessor in the queue, or NULL if
 * this PCB would be at the beginning of the queue.
 */
static struct pcb *find_prev_wakeup(pcb_queue_t queue, struct pcb *pcb)
{
	// sanity checks!
	assert(queue != NULL, "find_prev_wakeup: queue is null");
	assert(pcb != NULL, "find_prev_wakeup: pcb is null");

	struct pcb *prev = NULL;
	struct pcb *curr = queue->head;

	while (curr != NULL && curr->wakeup <= pcb->wakeup) {
		prev = curr;
		curr = curr->next;
	}

	return prev;
}

static struct pcb *find_prev_priority(pcb_queue_t queue, struct pcb *pcb)
{
	// sanity checks!
	assert(queue != NULL, "find_prev_priority: queue is null");
	assert(pcb != NULL, "find_prev_priority: pcb is null");

	struct pcb *prev = NULL;
	struct pcb *curr = queue->head;

	while (curr != NULL && curr->priority <= pcb->priority) {
		prev = curr;
		curr = curr->next;
	}

	return prev;
}

static struct pcb *find_prev_pid(pcb_queue_t queue, struct pcb *pcb)
{
	// sanity checks!
	assert(queue != NULL, "find_prev_pid: queue is null");
	assert(pcb != NULL, "find_prev_pid: pcb is null");

	struct pcb *prev = NULL;
	struct pcb *curr = queue->head;

	while (curr != NULL && curr->pid <= pcb->pid) {
		prev = curr;
		curr = curr->next;
	}

	return prev;
}

// a macro to simplify queue setup
#define QINIT(q, s)                         \
	q = &q##_queue;                         \
	if (pcb_queue_reset(q, s) != SUCCESS) { \
		panic("pcb_init can't reset " #q);  \
	}

void pcb_init(void)
{
	// there is no current process
	current = NULL;

	// set up the external links to the queues
	QINIT(pcb_freelist, O_PCB_FIFO);
	QINIT(ready, O_PCB_PRIO);
	QINIT(waiting, O_PCB_PID);
	QINIT(sleeping, O_PCB_WAKEUP);
	QINIT(zombie, O_PCB_PID);

	// We statically allocate our PCBs, so we need to add them
	// to the freelist before we can use them. If this changes
	// so that we dynamically allocate PCBs, this step either
	// won't be required, or could be used to pre-allocate some
	// number of PCB structures for future use.

	struct pcb *ptr = ptable;
	for (int i = 0; i < N_PROCS; ++i) {
		pcb_free(ptr);
		++ptr;
	}
}

int pcb_alloc(struct pcb **pcb)
{
	// sanity check!
	assert(pcb != NULL, "pcb_alloc: allocating a non free pcb pointer");

	// remove the first PCB from the free list
	struct pcb *tmp;
	if (pcb_queue_remove(pcb_freelist, &tmp) != SUCCESS)
		return E_NO_PCBS;

	*pcb = tmp;
	return SUCCESS;
}

void pcb_free(struct pcb *pcb)
{
	if (pcb != NULL) {
		// mark the PCB as available
		pcb->state = PROC_STATE_UNUSED;

		// add it to the free list
		int status = pcb_queue_insert(pcb_freelist, pcb);

		// if that failed, we're in trouble
		if (status != SUCCESS) {
			panic("pcb_free(%16p) status %d", (void *)pcb, status);
		}
	}
}

void pcb_zombify(register struct pcb *victim)
{
	// should this be an error?
	if (victim == NULL)
		return;

	// every process must have a parent, even if it's 'init'
	assert(victim->parent != NULL, "pcb_zombify: process missing a parent");

	// We need to locate the parent of this process.  We also need
	// to reparent any children of this process.  We do these in
	// a single loop.
	struct pcb *parent = victim->parent;
	struct pcb *zchild = NULL;

	// two PIDs we will look for
	pid_t vicpid = victim->pid;

	// speed up access to the process table entries
	register struct pcb *curr = ptable;

	for (int i = 0; i < N_PROCS; ++i, ++curr) {
		// make sure this is a valid entry
		if (curr->state == PROC_STATE_UNUSED)
			continue;

		// if this is our parent, just keep going - we continue
		// iterating to find all the children of this process.
		if (curr == parent)
			continue;

		if (curr->parent == victim) {
			// found a child - reparent it
			curr->parent = init_pcb;

			// see if this child is already undead
			if (curr->state == PROC_STATE_ZOMBIE) {
				// if it's already a zombie, remember it, so we
				// can pass it on to 'init'; also, if there are
				// two or more zombie children, it doesn't matter
				// which one we pick here, as the others will be
				// collected when 'init' loops
				zchild = curr;
			}
		}
	}

	// If we found a child that was already terminated, we need to
	// wake up the init process if it's already waiting.
	//
	// NOTE: we only need to do this for one Zombie child process -
	// init will loop and collect the others after it finishes with
	// this one.
	//
	// Also note: it's possible that the exiting process' parent is
	// also init, which means we're letting one of zombie children
	// of the exiting process be cleaned up by init before the
	// existing process itself is cleaned up by init. This will work,
	// because after init cleans up the zombie, it will loop and
	// call waitpid() again, by which time this exiting process will
	// be marked as a zombie.

	if (zchild != NULL && init_pcb->state == PROC_STATE_WAITING) {
		// dequeue the zombie
		assert(pcb_queue_remove_this(zombie, zchild) == SUCCESS,
			   "pcb_zombify: cannot remove zombie process from queue");

		assert(pcb_queue_remove_this(waiting, init_pcb) == SUCCESS,
			   "pcb_zombify: cannot remove waiting process from queue");

		// intrinsic return value is the PID
		PCB_RET(init_pcb) = zchild->pid;

		// may also want to return the exit status
		int64_t *ptr = (int64_t *)PCB_ARG(init_pcb, 2);

		if (ptr != NULL) {
			// BUG:
			// ********************************************************
			// ** Potential VM issue here!  This code assigns the exit
			// ** status into a variable in the parent's address space.
			// ** This works in the baseline because we aren't using
			// ** any type of memory protection.  If address space
			// ** separation is implemented, this code will very likely
			// ** STOP WORKING, and will need to be fixed.
			// ********************************************************
			*ptr = zchild->exit_status;
		}

		// all done - schedule 'init', and clean up the zombie
		schedule(init_pcb);
		pcb_cleanup(zchild);
	}

	// Now, deal with the parent of this process. If the parent is
	// already waiting, just wake it up and clean up this process.
	// Otherwise, this process becomes a zombie.
	//
	// NOTE: if the exiting process' parent is init and we just woke
	// init up to deal with a zombie child of the exiting process,
	// init's status won't be Waiting any more, so we don't have to
	// worry about it being scheduled twice.

	if (parent->state == PROC_STATE_WAITING) {
		// verify that the parent is either waiting for this process
		// or is waiting for any of its children
		uint64_t target = PCB_ARG(parent, 1);

		if (target == 0 || target == vicpid) {
			// the parent is waiting for this child or is waiting
			// for any of its children, so we can wake it up.

			// intrinsic return value is the PID
			PCB_RET(parent) = vicpid;

			// may also want to return the exit status
			int64_t *ptr = (int64_t *)PCB_ARG(parent, 2);

			if (ptr != NULL) {
				// ********************************************************
				// ** Potential VM issue here!  This code assigns the exit
				// ** status into a variable in the parent's address space.
				// ** This works in the baseline because we aren't using
				// ** any type of memory protection.  If address space
				// ** separation is implemented, this code will very likely
				// ** STOP WORKING, and will need to be fixed.
				// ********************************************************
				*ptr = victim->exit_status;
			}

			// all done - schedule the parent, and clean up the zombie
			schedule(parent);
			pcb_cleanup(victim);

			return;
		}
	}

	// The parent isn't waiting OR is waiting for a specific child
	// that isn't this exiting process, so we become a Zombie.
	//
	// This code assumes that Zombie processes are *not* in
	// a queue, but instead are just in the process table with
	// a state of 'Zombie'.  This simplifies life immensely,
	// because we won't need to dequeue it when it is collected
	// by its parent.

	victim->state = PROC_STATE_ZOMBIE;
	assert(pcb_queue_insert(zombie, victim) == SUCCESS,
		   "cannot insert victim process into zombie queue");

	// Note: we don't call _dispatch() here - we leave that for
	// the calling routine, as it's possible we don't need to
	// choose a new current process.
}

void pcb_cleanup(struct pcb *pcb)
{
	// avoid deallocating a NULL pointer
	if (pcb == NULL) {
		// should this be an error?
		return;
	}

	// we need to release all the VM data structures and frames
	mem_ctx_free(pcb->memctx);
	// TODO: close open files

	// release the PCB itself
	pcb_free(pcb);
}

struct pcb *pcb_find_pid(pid_t pid)
{
	// must be a valid PID
	if (pid < 1) {
		return NULL;
	}

	// scan the process table
	struct pcb *p = ptable;

	for (int i = 0; i < N_PROCS; ++i, ++p) {
		if (p->pid == pid && p->state != PROC_STATE_UNUSED) {
			return p;
		}
	}

	// didn't find it!
	return NULL;
}

struct pcb *pcb_find_ppid(pid_t pid)
{
	// must be a valid PID
	if (pid < 1) {
		return NULL;
	}

	// scan the process table
	struct pcb *p = ptable;

	for (int i = 0; i < N_PROCS; ++i, ++p) {
		assert(p->parent != NULL,
			   "pcb_find_ppid: process does not have a parent");
		if (p->parent->pid == pid && p->parent->state != PROC_STATE_UNUSED) {
			return p;
		}
	}

	// didn't find it!
	return NULL;
}

int pcb_queue_reset(pcb_queue_t queue, enum pcb_queue_order style)
{
	// sanity check
	assert(queue != NULL, "pcb_queue_reset: queue is null");

	// make sure the style is valid
	if (style < 0 || style >= N_PCB_ORDERINGS) {
		return E_BAD_PARAM;
	}

	// reset the queue
	queue->head = queue->tail = NULL;
	queue->order = style;

	return SUCCESS;
}

bool pcb_queue_empty(pcb_queue_t queue)
{
	// if there is no queue, blow up
	assert(queue != NULL, "pcb_queue_empty: queue is empty");

	return PCB_QUEUE_EMPTY(queue);
}

/**
 * Return the count of elements in the specified queue.
 *
 * @param[in] queue  The queue to check
 * @return the count (0 if the queue is empty)
 */
size_t pcb_queue_length(const pcb_queue_t queue)
{
	// sanity check
	assert(queue != NULL, "pcb_queue_length: queue is null");

	// this is pretty simple
	register struct pcb *tmp = queue->head;
	register size_t num = 0;

	while (tmp != NULL) {
		++num;
		tmp = tmp->next;
	}

	return num;
}

int pcb_queue_insert(pcb_queue_t queue, struct pcb *pcb)
{
	// sanity checks
	assert(queue != NULL, "pcb_queue_insert: queue is null");
	assert(pcb != NULL, "pcb_queue_insert: pcb is null");

	// if this PCB is already in a queue, we won't touch it
	if (pcb->next != NULL) {
		// what to do? we let the caller decide
		return E_BAD_PARAM;
	}

	// is the queue empty?
	if (queue->head == NULL) {
		queue->head = queue->tail = pcb;
		return SUCCESS;
	}
	assert(queue->tail != NULL, "pcb_queue_insert: queue tail is null");

	// no, so we need to search it
	struct pcb *prev = NULL;

	// find the predecessor node
	switch (queue->order) {
	case O_PCB_FIFO:
		prev = queue->tail;
		break;
	case O_PCB_PRIO:
		prev = find_prev_priority(queue, pcb);
		break;
	case O_PCB_PID:
		prev = find_prev_pid(queue, pcb);
		break;
	case O_PCB_WAKEUP:
		prev = find_prev_wakeup(queue, pcb);
		break;
	default:
		// do we need something more specific here?
		return E_BAD_PARAM;
	}

	// OK, we found the predecessor node; time to do the insertion

	if (prev == NULL) {
		// there is no predecessor, so we're
		// inserting at the front of the queue
		pcb->next = queue->head;
		if (queue->head == NULL) {
			// empty queue!?! - should we panic?
			queue->tail = pcb;
		}
		queue->head = pcb;

	} else if (prev->next == NULL) {
		// append at end
		prev->next = pcb;
		queue->tail = pcb;

	} else {
		// insert between prev & prev->next
		pcb->next = prev->next;
		prev->next = pcb;
	}

	return SUCCESS;
}

int pcb_queue_remove(pcb_queue_t queue, struct pcb **pcb)
{
	//sanity checks
	assert(queue != NULL, "pcb_queue_remove: queue is null");
	assert(pcb != NULL, "pcb_queue_remove: pcb is null");

	// can't get anything if there's nothing to get!
	if (PCB_QUEUE_EMPTY(queue)) {
		return E_EMPTY_QUEUE;
	}

	// take the first entry from the queue
	struct pcb *tmp = queue->head;
	queue->head = tmp->next;

	// disconnect it completely
	tmp->next = NULL;

	// was this the last thing in the queue?
	if (queue->head == NULL) {
		// yes, so clear the tail pointer for consistency
		queue->tail = NULL;
	}

	// save the pointer
	*pcb = tmp;

	return SUCCESS;
}

int pcb_queue_remove_this(pcb_queue_t queue, struct pcb *pcb)
{
	//sanity checks
	assert(queue != NULL, "pcb_queue_remove_this: queue is null");
	assert(pcb != NULL, "pcb_queue_remove_this: pcb is null");

	// can't get anything if there's nothing to get!
	if (PCB_QUEUE_EMPTY(queue)) {
		return E_EMPTY_QUEUE;
	}

	// iterate through the queue until we find the desired PCB
	struct pcb *prev = NULL;
	struct pcb *curr = queue->head;

	while (curr != NULL && curr != pcb) {
		prev = curr;
		curr = curr->next;
	}

	// case  prev  curr  next   interpretation
	// ====  ====  ====  ====   ============================
	//   1.    0     0    --    *** CANNOT HAPPEN ***
	//   2.    0    !0     0    removing only element
	//   3.    0    !0    !0    removing first element
	//   4.   !0     0    --    *** NOT FOUND ***
	//   5.   !0    !0     0    removing from end
	//   6.   !0    !0    !0    removing from middle

	if (curr == NULL) {
		// case 1
		assert(prev != NULL,
			   "pcb_queue_remove_this: prev element in queue is null");
		// case 4
		return E_NOT_FOUND;
	}

	// connect predecessor to successor
	if (prev != NULL) {
		// not the first element
		// cases 5 and 6
		prev->next = curr->next;
	} else {
		// removing first element
		// cases 2 and 3
		queue->head = curr->next;
	}

	// if this was the last node (cases 2 and 5),
	// also need to reset the tail pointer
	if (curr->next == NULL) {
		// if this was the only entry (2), prev is NULL,
		// so this works for that case, too
		queue->tail = prev;
	}

	// unlink current from queue
	curr->next = NULL;

	// there's a possible consistancy problem here if somehow
	// one of the queue pointers is NULL and the other one
	// is not NULL

	assert((queue->head == NULL && queue->tail == NULL) ||
			   (queue->head != NULL && queue->tail != NULL),
		   "pcb_queue_remove_this: queue consistancy problem");

	return SUCCESS;
}

struct pcb *pcb_queue_peek(const pcb_queue_t queue)
{
	//sanity check
	assert(queue != NULL, "pcb_queue_peek: queue is null");

	// can't get anything if there's nothing to get!
	if (PCB_QUEUE_EMPTY(queue)) {
		return NULL;
	}

	// just return the first entry from the queue
	return queue->head;
}

void schedule(struct pcb *pcb)
{
	// sanity check
	assert(pcb != NULL, "schedule: pcb is null");

	// check for a killed process
	if (pcb->state == PROC_STATE_KILLED)
		panic("attempted to schedule killed process %d", pcb->pid);

	// mark it as ready
	pcb->state = PROC_STATE_READY;

	// add it to the ready queue
	if (pcb_queue_insert(ready, pcb) != SUCCESS)
		panic("schedule insert fail");
}

void dispatch(void)
{
	// verify that there is no current process
	assert(current == NULL, "dispatch: current process is not null");

	// grab whoever is at the head of the queue
	int status = pcb_queue_remove(ready, &current);
	if (status != SUCCESS) {
		panic("dispatch queue remove failed, code %d", status);
	}

	// set the process up for success
	current->state = PROC_STATE_RUNNING;
	current->ticks = PROC_QUANTUM_STANDARD;
}

void ctx_dump(const char *msg, register struct cpu_regs *regs)
{
	// first, the message (if there is one)
	if (msg)
		kputs(msg);

	// the pointer
	kprintf(" @ %16p: ", (void *)regs);

	// if it's NULL, why did you bother calling me?
	if (regs == NULL) {
		kprintf(" NULL???\n");
		return;
	}

	// now, the contents
	kputc('\n');
	cpu_print_regs(regs);
}

void ctx_dump_all(const char *msg)
{
	// first, the message (if there is one)
	if (msg)
		kputs(msg);

	int n = 0;
	register struct pcb *pcb = ptable;
	for (int i = 0; i < N_PROCS; ++i, ++pcb) {
		if (pcb->state != PROC_STATE_UNUSED) {
			++n;
			kprintf("%2d(%d): ", n, pcb->pid);
			ctx_dump(NULL, pcb->regs);
		}
	}
}

void pcb_dump(const char *msg, register struct pcb *pcb, bool all)
{
	// first, the message (if there is one)
	if (msg)
		kputs(msg);

	// the pointer
	kprintf(" @ %16px:", (void *)pcb);

	// if it's NULL, why did you bother calling me?
	if (pcb == NULL) {
		kputs(" NULL???\n");
		return;
	}

	kprintf(" %d", pcb->pid);
	kprintf(" %s",
			pcb->state >= N_PROC_STATES ? "???" : proc_state_str[pcb->state]);

	if (!all) {
		// just printing IDs and states on one line
		return;
	}

	// now, the rest of the contents
	kprintf(" %s", pcb->priority >= N_PROC_PRIOS ?
					   "???" :
					   proc_prio_str[pcb->priority]);

	kprintf(" ticks %zu xit %d wake %16lx\n", pcb->ticks, pcb->exit_status,
			pcb->wakeup);

	kprintf(" parent %16p", (void *)pcb->regs);
	if (pcb->parent != NULL) {
		kprintf(" (%u)", pcb->parent->pid);
	}

	kprintf(" next %16p context %16p memctx %16p", (void *)pcb->next,
			(void *)pcb->regs, (void *)pcb->memctx);

	kputc('\n');
}

void pcb_queue_dump(const char *msg, pcb_queue_t queue, bool contents)
{
	// report on this queue
	kprintf("%s: ", msg);
	if (queue == NULL) {
		kputs("NULL???\n");
		return;
	}

	// first, the basic data
	kprintf("head %16p tail %16p", (void *)queue->head, (void *)queue->tail);

	// next, how the queue is ordered
	kprintf(" order %s\n", queue->order >= N_PCB_ORDERINGS ?
							   "????" :
							   pcb_ord_str[queue->order]);

	// if there are members in the queue, dump the first few PIDs
	if (contents && queue->head != NULL) {
		kputs(" PIDs: ");
		struct pcb *tmp = queue->head;
		for (int i = 0; i < 5 && tmp != NULL; ++i, tmp = tmp->next) {
			kprintf(" [%u]", tmp->pid);
		}

		if (tmp != NULL) {
			kputs(" ...");
		}

		kputc('\n');
	}
}

void ptable_dump(const char *msg, bool all)
{
	if (msg)
		kputs(msg);
	kputc(' ');

	int used = 0;
	int empty = 0;

	register struct pcb *pcb = ptable;
	for (int i = 0; i < N_PROCS; ++i) {
		if (pcb->state == PROC_STATE_UNUSED) {
			// an empty slot
			++empty;

		} else {
			// a non-empty slot
			++used;

			// if not dumping everything, add commas if needed
			if (!all && used) {
				kputc(',');
			}

			// report the table slot #
			kprintf(" #%d:", i);

			// and dump the contents
			pcb_dump(NULL, pcb, all);
		}
	}

	// only need this if we're doing one-line output
	if (!all) {
		kputc('\n');
	}

	// sanity check - make sure we saw the correct number of table slots
	if ((used + empty) != N_PROCS) {
		kprintf("Table size %d, used %d + empty %d = %d???\n", N_PROCS, used,
				empty, used + empty);
	}
}

void ptable_dump_counts(void)
{
	size_t nstate[N_PROC_STATES] = { 0 };
	size_t unknown = 0;

	int n = 0;
	struct pcb *ptr = ptable;
	while (n < N_PROCS) {
		if (ptr->state < 0 || ptr->state >= N_PROC_STATES) {
			++unknown;
		} else {
			++nstate[ptr->state];
		}
		++n;
		++ptr;
	}

	kprintf("Ptable: %zu ***", unknown);
	for (n = 0; n < N_PROC_STATES; ++n) {
		kprintf(" %zu %s", nstate[n],
				proc_state_str[n] != NULL ? proc_state_str[n] : "???");
	}
	kputc('\n');
}