diff options
Diffstat (limited to 'kernel')
-rw-r--r-- | kernel/drivers/pit.c | 12 | ||||
-rw-r--r-- | kernel/fs/fs.c | 53 | ||||
-rw-r--r-- | kernel/include/comus/drivers/pit.h | 2 | ||||
-rw-r--r-- | kernel/include/comus/fs.h | 4 | ||||
-rw-r--r-- | kernel/include/comus/memory.h | 35 | ||||
-rw-r--r-- | kernel/include/comus/procs.h | 159 | ||||
-rw-r--r-- | kernel/include/comus/syscalls.h | 37 | ||||
-rw-r--r-- | kernel/main.c | 4 | ||||
-rw-r--r-- | kernel/mboot/module.c | 2 | ||||
-rw-r--r-- | kernel/memory/memory.c | 65 | ||||
-rw-r--r-- | kernel/memory/memory.h | 7 | ||||
-rw-r--r-- | kernel/memory/paging.c | 147 | ||||
-rw-r--r-- | kernel/memory/paging.h | 3 | ||||
-rw-r--r-- | kernel/memory/physalloc.c | 3 | ||||
-rw-r--r-- | kernel/memory/virtalloc.c | 12 | ||||
-rw-r--r-- | kernel/memory/virtalloc.h | 5 | ||||
-rw-r--r-- | kernel/procs.c | 527 | ||||
-rw-r--r-- | kernel/user.c | 11 |
18 files changed, 424 insertions, 664 deletions
diff --git a/kernel/drivers/pit.c b/kernel/drivers/pit.c index a8fe179..d77df08 100644 --- a/kernel/drivers/pit.c +++ b/kernel/drivers/pit.c @@ -6,7 +6,7 @@ #define CHAN_2 0x42 #define CMD 0x43 -uint64_t ticks = 0; +volatile uint64_t ticks = 0; uint16_t pit_read_divider(void) { @@ -21,8 +21,10 @@ uint16_t pit_read_divider(void) void pit_set_divider(uint16_t count) { - cli(); - outb(CHAN_0, count & 0xFF); // low byte - outb(CHAN_0, (count & 0xFF00) >> 8); // high byte - sti(); + (void)count; + // FIXME: broken on -O0 + // cli(); + // outb(CHAN_0, count & 0xFF); // low byte + // outb(CHAN_0, (count & 0xFF00) >> 8); // high byte + // sti(); } diff --git a/kernel/fs/fs.c b/kernel/fs/fs.c index 4b6bc5d..c8399a3 100644 --- a/kernel/fs/fs.c +++ b/kernel/fs/fs.c @@ -18,7 +18,7 @@ void fs_init(void) void *rd = mboot_get_initrd(&rd_len); if (rd != NULL) { assert(idx < N_DISKS, "Too many disks, limit is: %d\n", N_DISKS); - fs_disks[idx] = (struct disk) { + fs_disks[idx] = (struct disk){ .present = 1, .id = idx, .type = DISK_TYPE_RAMDISK, @@ -32,7 +32,7 @@ void fs_init(void) struct ide_devicelist ide_list = ide_devices_enumerate(); for (size_t i = 0; i < ide_list.num_devices; i++) { assert(idx < N_DISKS, "Too many disks, limit is: %d\n", N_DISKS); - fs_disks[idx] = (struct disk) { + fs_disks[idx] = (struct disk){ .present = 1, .id = idx, .type = DISK_TYPE_ATA, @@ -92,7 +92,8 @@ int fs_find_file_rel(struct file *rel, char *rel_path, struct file *res) panic("fs_find_file_rel NOT YET IMPLEMENTED"); } -static int disk_read_rd(struct disk *disk, size_t offset, size_t len, uint8_t *buffer) +static int disk_read_rd(struct disk *disk, size_t offset, size_t len, + uint8_t *buffer) { if (offset + len >= disk->rd.len) { WARN("attempted to read past length of ramdisk"); @@ -103,7 +104,8 @@ static int disk_read_rd(struct disk *disk, size_t offset, size_t len, uint8_t *b return 0; } -static int disk_read_ata(struct disk *disk, size_t offset, size_t len, uint8_t *buffer) +static int disk_read_ata(struct disk *disk, size_t offset, size_t len, + uint8_t *buffer) { static size_t atabuf_len = 0; static uint16_t *atabuf = NULL; @@ -112,28 +114,28 @@ static int disk_read_ata(struct disk *disk, size_t offset, size_t len, uint8_t * uint32_t err = offset % ATA_SECT_SIZE; int ret = 0; - if (atabuf == NULL || atabuf_len < numsects*ATA_SECT_SIZE) { - if ((atabuf = krealloc(atabuf, numsects*ATA_SECT_SIZE)) == NULL) + if (atabuf == NULL || atabuf_len < numsects * ATA_SECT_SIZE) { + if ((atabuf = krealloc(atabuf, numsects * ATA_SECT_SIZE)) == NULL) return 1; - atabuf_len = numsects*ATA_SECT_SIZE; + atabuf_len = numsects * ATA_SECT_SIZE; } // read sectors - if ((ret = ide_device_read_sectors(disk->ide, numsects, offset / ATA_SECT_SIZE, atabuf))) + if ((ret = ide_device_read_sectors(disk->ide, numsects, + offset / ATA_SECT_SIZE, atabuf))) return 1; // copy over to buffer - memcpy(buffer, atabuf + err, len); + memcpy(buffer, (char *)atabuf + err, len); return ret; } - -int disk_read(struct disk *disk, size_t offset, size_t len, uint8_t *buffer) +int disk_read(struct disk *disk, size_t offset, size_t len, void *buffer) { int ret = 0; - switch(disk->type) { + switch (disk->type) { case DISK_TYPE_RAMDISK: ret = disk_read_rd(disk, offset, len, buffer); break; @@ -141,14 +143,16 @@ int disk_read(struct disk *disk, size_t offset, size_t len, uint8_t *buffer) ret = disk_read_ata(disk, offset, len, buffer); break; default: - ERROR("attempted to read from disk with invalid type: %d\n", disk->type); + ERROR("attempted to read from disk with invalid type: %d\n", + disk->type); ret = 1; } return ret; } -static int disk_write_rd(struct disk *disk, size_t offset, size_t len, uint8_t *buffer) +static int disk_write_rd(struct disk *disk, size_t offset, size_t len, + uint8_t *buffer) { if (offset + len >= disk->rd.len) { WARN("attempted to write past length of ramdisk"); @@ -159,7 +163,8 @@ static int disk_write_rd(struct disk *disk, size_t offset, size_t len, uint8_t * return 0; } -static int disk_write_ata(struct disk *disk, size_t offset, size_t len, uint8_t *buffer) +static int disk_write_ata(struct disk *disk, size_t offset, size_t len, + uint8_t *buffer) { static size_t atabuf_len = 0; static uint16_t *atabuf = NULL; @@ -168,31 +173,33 @@ static int disk_write_ata(struct disk *disk, size_t offset, size_t len, uint8_t uint32_t err = offset % ATA_SECT_SIZE; int ret = 0; - if (atabuf == NULL || atabuf_len < numsects*ATA_SECT_SIZE) { - if ((atabuf = krealloc(atabuf, numsects*ATA_SECT_SIZE)) == NULL) + if (atabuf == NULL || atabuf_len < numsects * ATA_SECT_SIZE) { + if ((atabuf = krealloc(atabuf, numsects * ATA_SECT_SIZE)) == NULL) return 1; - atabuf_len = numsects*ATA_SECT_SIZE; + atabuf_len = numsects * ATA_SECT_SIZE; } // read sectors what will be overwritten - if ((ret = ide_device_read_sectors(disk->ide, numsects, offset / ATA_SECT_SIZE, atabuf))) + if ((ret = ide_device_read_sectors(disk->ide, numsects, + offset / ATA_SECT_SIZE, atabuf))) return 1; // copy custom data over - memcpy(atabuf + err, buffer, len); + memcpy((char *)atabuf + err, buffer, len); // write back sectors - if ((ret = ide_device_write_sectors(disk->ide, numsects, offset / ATA_SECT_SIZE, atabuf))) + if ((ret = ide_device_write_sectors(disk->ide, numsects, + offset / ATA_SECT_SIZE, atabuf))) return 1; return ret; } -int disk_write(struct disk *disk, size_t offset, size_t len, uint8_t *buffer) +int disk_write(struct disk *disk, size_t offset, size_t len, void *buffer) { int ret = 0; - switch(disk->type) { + switch (disk->type) { case DISK_TYPE_RAMDISK: ret = disk_write_rd(disk, offset, len, buffer); break; diff --git a/kernel/include/comus/drivers/pit.h b/kernel/include/comus/drivers/pit.h index a7a111d..77f0a14 100644 --- a/kernel/include/comus/drivers/pit.h +++ b/kernel/include/comus/drivers/pit.h @@ -13,7 +13,7 @@ // how many time the pit has ticked // not accurate time, good for spinning though -extern uint64_t ticks; +extern volatile uint64_t ticks; uint16_t pit_read_divider(void); void pit_set_divider(uint16_t count); diff --git a/kernel/include/comus/fs.h b/kernel/include/comus/fs.h index 048c7c5..e67b6fe 100644 --- a/kernel/include/comus/fs.h +++ b/kernel/include/comus/fs.h @@ -47,7 +47,7 @@ struct disk { * @param buffer - the buffer to save data into * @returns bytes read on success, negative fs error code in failure */ -int disk_read(struct disk *disk, size_t offset, size_t len, uint8_t *buffer); +int disk_read(struct disk *disk, size_t offset, size_t len, void *buffer); /** * write data from a disk into a buffer @@ -58,7 +58,7 @@ int disk_read(struct disk *disk, size_t offset, size_t len, uint8_t *buffer); * @param buffer - the buffer to read from * @returns bytes written on success, negative fs error code in failure */ -int disk_write(struct disk *disk, size_t offset, size_t len, uint8_t *buffer); +int disk_write(struct disk *disk, size_t offset, size_t len, void *buffer); enum file_type { // regular file diff --git a/kernel/include/comus/memory.h b/kernel/include/comus/memory.h index 3b57324..588219e 100644 --- a/kernel/include/comus/memory.h +++ b/kernel/include/comus/memory.h @@ -97,11 +97,11 @@ mem_ctx_t mem_ctx_clone(mem_ctx_t ctx, bool cow); void mem_ctx_free(mem_ctx_t ctx); /** - * Free a memory context + * Switch into a different memory context * - * @param ctx - pointer to the memory context + * @param ctx - the memory context */ -void free_mem_ctx(mem_ctx_t ctx); +void mem_ctx_switch(mem_ctx_t ctx); /** * Allocates at least len bytes of memory starting at @@ -126,17 +126,42 @@ void mem_unmapaddr(mem_ctx_t ctx, void *virt); /** * Allocate a single page of memory with the given paging structure * + * @param ctx - the memory context + * @param lazy - if to lazy allocate pages (alloc on fault) + * @returns the vitural address aloocated or NULL on failure + */ +void *mem_alloc_page(mem_ctx_t ctx, bool lazy); + +/** + * Allocate a single page of memory at the given vitural address with the given paging structure + * + * @param ctx - the memory context + * @param virt - the vitural address to allocate at + * @param lazy - if to lazy allocate pages (alloc on fault) * @returns the vitural address aloocated or NULL on failure */ -void *mem_alloc_page(mem_ctx_t ctx); +void *mem_alloc_page_at(mem_ctx_t ctx, void *virt, bool lazy); /** * Allocate size_t amount of contiguous virtual pages with the given paging structure * + * @param ctx - the memory context + * @param count - the number of pages to allocate + * @param lazy - if to lazy allocate pages (alloc on fault) + * @returns the address allocated or NULL on failure + */ +void *mem_alloc_pages(mem_ctx_t ctx, size_t count, bool lazy); + +/** + * Allocate size_t amount of contiguous virtual pages at a given virtural address with the given paging structure + * + * @param ctx - the memory context * @param count - the number of pages to allocate + * @param virt - the vitural address to allocate at + * @param lazy - if to lazy allocate pages (alloc on fault) * @returns the address allocated or NULL on failure */ -void *mem_alloc_pages(mem_ctx_t ctx, size_t count); +void *mem_alloc_pages_at(mem_ctx_t ctx, size_t count, void *virt, bool lazy); /** * Free allocated pages with the given paging structure. diff --git a/kernel/include/comus/procs.h b/kernel/include/comus/procs.h index fe8cbee..80c4fe4 100644 --- a/kernel/include/comus/procs.h +++ b/kernel/include/comus/procs.h @@ -14,6 +14,16 @@ #include <comus/memory.h> #include <lib.h> +#define PCB_REG(pcb, x) ((pcb)->regs->x) +#define PCB_RET(pcb) ((pcb)->regs->rax) +#define PCB_ARG1(pcb) PCB_REG((pcb), rdi) +#define PCB_ARG2(pcb) PCB_REG((pcb), rsi) +#define PCB_ARG3(pcb) PCB_REG((pcb), rdx) +#define PCB_ARG4(pcb) PCB_REG((pcb), rcx) + +/// process id +typedef unsigned short pid_t; + /// process states enum proc_state { // pre-viable @@ -33,71 +43,27 @@ enum proc_state { N_PROC_STATES, }; -/// process priority -enum proc_priority { - PROC_PRIO_HIGH, - PROC_PRIO_STD, - PROC_PRIO_LOW, - PROC_PRIO_DEFERRED, - // sentinel - N_PROC_PRIOS, -}; - -/// process quantum length -/// values are number of clock ticks -enum proc_quantum { - PROC_QUANTUM_SHORT = 1, - PROC_QUANTUM_STANDARD = 3, - PROC_QUANTUM_LONG = 5, -}; - -/// program section information -struct proc_section { - uint64_t length; - uint64_t addr; -}; - -#define SECT_L1 0 -#define SECT_L2 1 -#define SECT_L3 2 -#define SECT_STACK 3 -#define N_SECTS 4 -#define N_LOADABLE 3 - -/// pid type -typedef unsigned short pid_t; - /// process control block struct pcb { - // process context + // metadata + pid_t pid; + struct pcb *parent; + enum proc_state state; + size_t priority; + size_t ticks; + + // context mem_ctx_t memctx; struct cpu_regs *regs; - // vm information - struct proc_section sects[N_SECTS]; - // queue linkage struct pcb *next; // next PDB in queue // process state information - struct pcb *parent; // pointer to PCB of our parent process - uint64_t wakeup; // wakeup time, for sleeping processes - uint8_t exit_status; // termination status, for parent's use - - // process metadata - pid_t pid; // pid of this process - enum proc_state state; // process' current state - enum proc_priority priority; // process priority level - size_t ticks; // remaining ticks in this time slice + uint64_t wakeup; + uint8_t exit_status; }; -#define PCB_REG(pcb, x) ((pcb)->regs->x) -#define PCB_RET(pcb) ((pcb)->regs->rax) -#define PCB_ARG(pcb, n) (((uint64_t *)(((pcb)->regs) + 1))[(n)]) - -/// pcb queue structure -typedef struct pcb_queue_s *pcb_queue_t; - /// ordering of pcb queues enum pcb_queue_order { O_PCB_FIFO, @@ -108,6 +74,9 @@ enum pcb_queue_order { N_PCB_ORDERINGS, }; +/// pcb queue structure +typedef struct pcb_queue_s *pcb_queue_t; + /// public facing pcb queues extern pcb_queue_t pcb_freelist; extern pcb_queue_t ready; @@ -116,51 +85,40 @@ extern pcb_queue_t sleeping; extern pcb_queue_t zombie; /// pointer to the currently-running process -extern struct pcb *current; - +extern struct pcb *current_pcb; +/// pointer to the pcb for the 'init' process +extern struct pcb *init_pcb; /// the process table extern struct pcb ptable[N_PROCS]; /// next avaliable pid extern pid_t next_pid; -/// pointer to the pcb for the 'init' process -extern struct pcb *init_pcb; - -/// table of state name strings -extern const char *proc_state_str[N_PROC_STATES]; - -/// table of priority name strings -extern const char *proc_prio_str[N_PROC_PRIOS]; - -/// table of queue ordering name strings -extern const char *pcb_ord_str[N_PCB_ORDERINGS]; - /** * Initialization for the process module */ void pcb_init(void); /** - * Allocate a PCB from the list of free PCBs + * allocate a PCB from the free list + * + * @returns 0 on success or non zero error code */ int pcb_alloc(struct pcb **pcb); /** - * Return a PCB to the list of free PCBs. + * free an allocted PCB back to the free list * - * @param pcb Pointer to the PCB to be deallocated. + * @param pcb - pointer to the PCB to be deallocated */ void pcb_free(struct pcb *pcb); /** - * Turn the indicated process into a Zombie. This function - * does most of the real work for exit() and kill() calls. - * Is also called from the scheduler and dispatcher. + * turn the indicated process into a zombie * * @param pcb - pointer to the newly-undead PCB */ -void pcb_zombify(register struct pcb *victim); +void pcb_zombify(struct pcb *victim); /** * Reclaim a process' data structures @@ -237,7 +195,7 @@ struct pcb *pcb_queue_peek(const pcb_queue_t queue); * @param pcb[out] Pointer to where the PCB pointer will be saved * @return status of the removal request */ -int pcb_queue_remove(pcb_queue_t queue, struct pcb **pcb); +int pcb_queue_pop(pcb_queue_t queue, struct pcb **pcb); /** * Remove the specified PCB from the indicated queue. @@ -246,7 +204,7 @@ int pcb_queue_remove(pcb_queue_t queue, struct pcb **pcb); * @param pcb[in] Pointer to the PCB to be removed * @return status of the removal request */ -int pcb_queue_remove_this(pcb_queue_t queue, struct pcb *pcb); +int pcb_queue_remove(pcb_queue_t queue, struct pcb *pcb); /** * Schedule the supplied process @@ -260,51 +218,4 @@ void schedule(struct pcb *pcb); */ void dispatch(void); -/** - * Dumps the contents of this process context to the console - * - * @param msg[in] An optional message to print before the dump - * @param c[in] The context to dump out - */ -void ctx_dump(const char *msg, register struct cpu_regs *c); - -/** - * dump the process context for all active processes - * - * @param msg[in] Optional message to print - */ -void ctx_dump_all(const char *msg); - -/** - * Dumps the contents of this PCB to the console - * - * @param msg[in] An optional message to print before the dump - * @param p[in] The PCB to dump - * @param all[in] Dump all the contents? - */ -void pcb_dump(const char *msg, register struct pcb *p, bool all); - -/** - * Dump the contents of the specified queue to the console - * - * @param msg[in] An optional message to print before the dump - * @param queue[in] The queue to dump - * @param contents[in] Also dump (some) contents? - */ -void pcb_queue_dump(const char *msg, pcb_queue_t queue, bool contents); - -/** - * dump the contents of the "active processes" table - * - * @param msg[in] Optional message to print - * @param all[in] Dump all or only part of the relevant data - */ -void ptable_dump(const char *msg, bool all); - -/** - * Prints basic information about the process table (number of - * entries, number with each process state, etc.). - */ -void ptable_dump_counts(void); - #endif /* procs.h */ diff --git a/kernel/include/comus/syscalls.h b/kernel/include/comus/syscalls.h new file mode 100644 index 0000000..3dc128d --- /dev/null +++ b/kernel/include/comus/syscalls.h @@ -0,0 +1,37 @@ +/** + * @file syscalls.h + * + * @author Freya Murphy <freya@freyacat.org> + * @author cisi 452 + * + * System call declarations + */ + +#ifndef SYSCALLS_H_ +#define SYSCALLS_H_ + +#define SYS_exit 0 +#define SYS_waitpid 1 +#define SYS_fork 2 +#define SYS_exec 3 +#define SYS_open 4 +#define SYS_close 5 +#define SYS_read 6 +#define SYS_write 7 +#define SYS_getpid 8 +#define SYS_getppid 9 +#define SYS_gettime 10 +#define SYS_getprio 11 +#define SYS_setprio 12 +#define SYS_kill 13 +#define SYS_sleep 14 +#define SYS_brk 15 +#define SYS_sbrk 16 + +// UPDATE THIS DEFINITION IF MORE SYSCALLS ARE ADDED! +#define N_SYSCALLS 13 + +// interrupt vector entry for system calls +#define VEC_SYSCALL 0x80 + +#endif /* syscalls.h */ diff --git a/kernel/main.c b/kernel/main.c index 4953940..4047a64 100644 --- a/kernel/main.c +++ b/kernel/main.c @@ -8,6 +8,7 @@ #include <comus/drivers/gpu.h> #include <comus/drivers/ata.h> #include <comus/fs.h> +#include <comus/procs.h> #include <lib.h> void kreport(void) @@ -40,6 +41,9 @@ void main(long magic, volatile void *mboot) // load file systems fs_init(); + // initalize processes + pcb_init(); + // report system state kreport(); diff --git a/kernel/mboot/module.c b/kernel/mboot/module.c index 7a64f2e..79d092e 100644 --- a/kernel/mboot/module.c +++ b/kernel/mboot/module.c @@ -20,5 +20,5 @@ void *mboot_get_initrd(size_t *len) struct multiboot_tag_module *mod = (struct multiboot_tag_module *)tag; *len = mod->mod_end - mod->mod_start; - return (void*) (uintptr_t) mod->mod_start; + return (void *)(uintptr_t)mod->mod_start; } diff --git a/kernel/memory/memory.c b/kernel/memory/memory.c index de94fe3..57aa08c 100644 --- a/kernel/memory/memory.c +++ b/kernel/memory/memory.c @@ -2,6 +2,7 @@ #include <comus/asm.h> #include <comus/mboot.h> #include <comus/efi.h> +#include <comus/limits.h> #include <lib.h> #include "memory.h" @@ -9,10 +10,16 @@ #include "virtalloc.h" #include "physalloc.h" +// kernel memory context mem_ctx_t kernel_mem_ctx; -struct mem_ctx_s _kernel_mem_ctx; +static struct mem_ctx_s _kernel_mem_ctx; + +// kernel page tables extern volatile char kernel_pml4[]; -extern struct virt_ctx kernel_virt_ctx; + +// user space memory contexts +static struct mem_ctx_s user_mem_ctx[N_PROCS]; +static struct mem_ctx_s *user_mem_ctx_next = NULL; void *kmapaddr(void *phys, void *virt, size_t len, unsigned int flags) { @@ -26,12 +33,12 @@ void kunmapaddr(void *virt) void *kalloc_page(void) { - return mem_alloc_page(kernel_mem_ctx); + return mem_alloc_page(kernel_mem_ctx, false); } void *kalloc_pages(size_t count) { - return mem_alloc_pages(kernel_mem_ctx, count); + return mem_alloc_pages(kernel_mem_ctx, count, false); } void kfree_pages(void *ptr) @@ -46,7 +53,20 @@ int kload_page(void *virt) mem_ctx_t mem_ctx_alloc(void) { - panic("not yet implemented"); + mem_ctx_t ctx = user_mem_ctx_next; + if (ctx == NULL) + return NULL; + + if ((ctx->pml4 = pml4_alloc()) == NULL) + return NULL; + virtaddr_init(&ctx->virtctx); + + user_mem_ctx_next = ctx->prev; + if (ctx->prev) + ctx->prev->next = NULL; + ctx->prev = NULL; + + return ctx; } mem_ctx_t mem_ctx_clone(mem_ctx_t ctx, bool cow) @@ -59,9 +79,21 @@ mem_ctx_t mem_ctx_clone(mem_ctx_t ctx, bool cow) void mem_ctx_free(mem_ctx_t ctx) { - (void)ctx; + pml4_free(ctx->pml4); + virtaddr_cleanup(&ctx->virtctx); - panic("not yet implemented"); + if (user_mem_ctx_next == NULL) { + user_mem_ctx_next = ctx; + } else { + user_mem_ctx_next->next = ctx; + ctx->prev = user_mem_ctx_next; + user_mem_ctx_next = ctx; + } +} + +void mem_ctx_switch(mem_ctx_t ctx) +{ + __asm__ volatile("mov %0, %%cr3" ::"r"(ctx->pml4) : "memory"); } void memory_init(void) @@ -73,11 +105,10 @@ void memory_init(void) kernel_mem_ctx = &_kernel_mem_ctx; kernel_mem_ctx->pml4 = kernel_pml4; - kernel_mem_ctx->virtctx = &kernel_virt_ctx; cli(); paging_init(); - virtaddr_init(kernel_mem_ctx->virtctx); + virtaddr_init(&kernel_mem_ctx->virtctx); physalloc_init(&mmap); sti(); @@ -88,4 +119,20 @@ void memory_init(void) continue; kmapaddr((void *)seg->addr, (void *)seg->addr, seg->len, F_WRITEABLE); } + + // setup user mem ctx linked list + for (size_t i = 0; i < N_PROCS; i++) { + struct mem_ctx_s *ctx = &user_mem_ctx[i]; + ctx->next = NULL; + ctx->prev = NULL; + + if (user_mem_ctx_next == NULL) { + user_mem_ctx_next = ctx; + continue; + } + + user_mem_ctx_next->next = ctx; + ctx->prev = user_mem_ctx_next; + user_mem_ctx_next = ctx; + } } diff --git a/kernel/memory/memory.h b/kernel/memory/memory.h index c39656d..2657fc7 100644 --- a/kernel/memory/memory.h +++ b/kernel/memory/memory.h @@ -3,6 +3,11 @@ #include "virtalloc.h" struct mem_ctx_s { - struct virt_ctx *virtctx; + // page tables volatile char *pml4; + // virt addr allocator + struct virt_ctx virtctx; + // linked list + struct mem_ctx_s *next; + struct mem_ctx_s *prev; }; diff --git a/kernel/memory/paging.c b/kernel/memory/paging.c index 0c74145..ff73444 100644 --- a/kernel/memory/paging.c +++ b/kernel/memory/paging.c @@ -63,63 +63,72 @@ extern volatile struct pte // paged address to read page tables // the structures are not gurenteed to be ident mapped // map them here with map_<type>(phys_addr) before useing structures -void volatile *addr_mapped = (void *)(uintptr_t)0x40004000; static volatile struct pml4e *pml4_mapped = (void *)(uintptr_t)0x40000000; static volatile struct pdpte *pdpt_mapped = (void *)(uintptr_t)0x40001000; static volatile struct pde *pd_mapped = (void *)(uintptr_t)0x40002000; static volatile struct pte *pt_mapped = (void *)(uintptr_t)0x40003000; +static volatile void *addr_mapped = (void *)(uintptr_t)0x40004000; + +// kernel start/end +extern char kernel_start[]; +extern char kernel_end[]; static inline void invlpg(volatile void *addr) { __asm__ volatile("invlpg (%0)" ::"r"(addr) : "memory"); } -static void load_addr(volatile void *phys_addr) -{ - static volatile struct pte *pt = &paging_pt[4]; - pt->address = (uint64_t)phys_addr >> 12; - pt->flags = F_PRESENT | F_WRITEABLE; - invlpg(addr_mapped); -} - -static void load_pml4(volatile void *phys) +static volatile struct pml4e *load_pml4(volatile void *phys) { static volatile struct pte *pt = &paging_pt[0]; if ((uint64_t)phys >> 12 == pt->address) - return; + return pml4_mapped; pt->address = (uint64_t)phys >> 12; pt->flags = F_PRESENT | F_WRITEABLE; invlpg(pml4_mapped); + return pml4_mapped; } -static void load_pdpt(volatile void *phys) +static volatile struct pdpte *load_pdpt(volatile void *phys) { static volatile struct pte *pt = &paging_pt[1]; if ((uint64_t)phys >> 12 == pt->address) - return; + return pdpt_mapped; pt->address = (uint64_t)phys >> 12; pt->flags = F_PRESENT | F_WRITEABLE; invlpg(pdpt_mapped); + return pdpt_mapped; } -static void load_pd(volatile void *phys) +static volatile struct pde *load_pd(volatile void *phys) { static volatile struct pte *pt = &paging_pt[2]; if ((uint64_t)phys >> 12 == pt->address) - return; + return pd_mapped; pt->address = (uint64_t)phys >> 12; pt->flags = F_PRESENT | F_WRITEABLE; invlpg(pd_mapped); + return pd_mapped; } -static void load_pt(volatile void *phys) +static volatile struct pte *load_pt(volatile void *phys) { static volatile struct pte *pt = &paging_pt[3]; if ((uint64_t)phys >> 12 == pt->address) - return; + return pt_mapped; pt->address = (uint64_t)phys >> 12; pt->flags = F_PRESENT | F_WRITEABLE; invlpg(pt_mapped); + return pt_mapped; +} + +static volatile void *load_addr(volatile void *phys_addr) +{ + static volatile struct pte *pt = &paging_pt[4]; + pt->address = (uint64_t)phys_addr >> 12; + pt->flags = F_PRESENT | F_WRITEABLE; + invlpg(addr_mapped); + return addr_mapped; } #define PAG_SUCCESS 0 @@ -488,7 +497,6 @@ static int map_pages(volatile struct pml4e *root, void *virt_start, return 0; failed: - unmap_pages(root, virt, i); return 1; @@ -498,18 +506,18 @@ void paging_init(void) { // map pdpt kernel_pml4[0].flags = F_PRESENT | F_WRITEABLE; - kernel_pml4[0].address = (uint64_t)(&kernel_pdpt_0) >> 12; + kernel_pml4[0].address = (uint64_t)(kernel_pdpt_0) >> 12; // map pd0 & pd1 kernel_pdpt_0[0].flags = F_PRESENT | F_WRITEABLE; - kernel_pdpt_0[0].address = (uint64_t)(&kernel_pd_0) >> 12; + kernel_pdpt_0[0].address = (uint64_t)(kernel_pd_0) >> 12; kernel_pdpt_0[1].flags = F_PRESENT | F_WRITEABLE; - kernel_pdpt_0[1].address = (uint64_t)(&kernel_pd_1) >> 12; + kernel_pdpt_0[1].address = (uint64_t)(kernel_pd_1) >> 12; // map pd0 entires (length N_IDENT_PTS) for (int i = 0; i < N_IDENT_PTS; i++) { kernel_pd_0[i].flags = F_PRESENT | F_WRITEABLE; - kernel_pd_0[i].address = (uint64_t)(&kernel_pd_0_ents[512 * i]) >> 12; + kernel_pd_0[i].address = (uint64_t)(kernel_pd_0_ents + 512 * i) >> 12; } // identity map kernel @@ -520,15 +528,39 @@ void paging_init(void) // map paging_pt kernel_pd_1[0].flags = F_PRESENT | F_WRITEABLE; - kernel_pd_1[0].address = (uint64_t)(&paging_pt) >> 12; + kernel_pd_1[0].address = (uint64_t)(paging_pt) >> 12; - memsetv(&paging_pt, 0, 4096); + memsetv(paging_pt, 0, 4096); // make sure we are using THESE pagetables // EFI doesnt on boot __asm__ volatile("mov %0, %%cr3" ::"r"(kernel_pml4) : "memory"); } +volatile void *pml4_alloc(void) +{ + struct pml4e *pml4_phys = alloc_phys_page(); + struct pml4e *pml4 = kmapaddr(pml4_phys, NULL, PAGE_SIZE, F_WRITEABLE); + memset(pml4, 0, PAGE_SIZE); + + if (map_pages(pml4_phys, kernel_start, kernel_start, + F_PRESENT | F_WRITEABLE, + (kernel_end - kernel_start) / PAGE_SIZE)) { + free_phys_page(pml4_phys); + kunmapaddr(pml4); + return NULL; + } + + kunmapaddr(pml4); + return pml4_phys; +} + +void pml4_free(volatile void *pml4) +{ + (void)pml4; + // TODD: free structures +} + static inline void *page_align(void *addr) { uintptr_t a = (uintptr_t)addr; @@ -552,13 +584,13 @@ void *mem_mapaddr(mem_ctx_t ctx, void *phys, void *virt, size_t len, // get page aligned (or allocate) vitural address if (virt == NULL) - virt = virtaddr_alloc(ctx->virtctx, pages); + virt = virtaddr_alloc(&ctx->virtctx, pages); if (virt == NULL) return NULL; if (map_pages((volatile struct pml4e *)ctx->pml4, virt, aligned_phys, F_PRESENT | flags, pages)) { - virtaddr_free(ctx->virtctx, virt); + virtaddr_free(&ctx->virtctx, virt); return NULL; } @@ -567,32 +599,72 @@ void *mem_mapaddr(mem_ctx_t ctx, void *phys, void *virt, size_t len, void mem_unmapaddr(mem_ctx_t ctx, void *virt) { - long pages = virtaddr_free(ctx->virtctx, virt); + if (virt == NULL) + return; + + long pages = virtaddr_free(&ctx->virtctx, virt); if (pages < 1) return; unmap_pages(kernel_pml4, virt, pages); } -void *mem_alloc_page(mem_ctx_t ctx) +void *mem_alloc_page(mem_ctx_t ctx, bool lazy) { - void *virt = virtaddr_alloc(ctx->virtctx, 1); + void *virt = virtaddr_alloc(&ctx->virtctx, 1); if (virt == NULL) return NULL; - if (map_page((volatile struct pml4e *)ctx->pml4, virt, NULL, F_WRITEABLE)) { - virtaddr_free(ctx->virtctx, virt); + + if (mem_alloc_page_at(ctx, virt, lazy) == NULL) { + virtaddr_free(&ctx->virtctx, virt); + return NULL; + } + + return virt; +} + +void *mem_alloc_page_at(mem_ctx_t ctx, void *virt, bool lazy) +{ + void *phys = NULL; + if (!lazy) { + if ((phys = alloc_phys_page()) == NULL) + return NULL; + } + + if (map_page((volatile struct pml4e *)ctx->pml4, virt, phys, F_WRITEABLE)) { + if (phys) + free_phys_page(phys); return NULL; } + return virt; } -void *mem_alloc_pages(mem_ctx_t ctx, size_t count) +void *mem_alloc_pages(mem_ctx_t ctx, size_t count, bool lazy) { - void *virt = virtaddr_alloc(ctx->virtctx, count); + void *virt = virtaddr_alloc(&ctx->virtctx, count); if (virt == NULL) return NULL; - if (map_pages((volatile struct pml4e *)ctx->pml4, virt, NULL, F_WRITEABLE, + + if (mem_alloc_pages_at(ctx, count, virt, lazy) == NULL) { + virtaddr_free(&ctx->virtctx, virt); + return NULL; + } + + return virt; +} + +void *mem_alloc_pages_at(mem_ctx_t ctx, size_t count, void *virt, bool lazy) +{ + void *phys = NULL; + if (!lazy) { + if ((phys = alloc_phys_pages(count)) == NULL) + return NULL; + } + + if (map_pages((volatile struct pml4e *)ctx->pml4, virt, phys, F_WRITEABLE, count)) { - virtaddr_free(ctx->virtctx, virt); + if (phys) + free_phys_pages(phys, count); return NULL; } return virt; @@ -600,7 +672,10 @@ void *mem_alloc_pages(mem_ctx_t ctx, size_t count) void mem_free_pages(mem_ctx_t ctx, void *virt) { - long pages = virtaddr_free(ctx->virtctx, virt); + if (virt == NULL) + return; + + long pages = virtaddr_free(&ctx->virtctx, virt); if (pages == 1) unmap_page((volatile struct pml4e *)ctx->pml4, virt); else if (pages > 1) diff --git a/kernel/memory/paging.h b/kernel/memory/paging.h index b54d422..e2a4464 100644 --- a/kernel/memory/paging.h +++ b/kernel/memory/paging.h @@ -11,4 +11,7 @@ void paging_init(void); +volatile void *pml4_alloc(void); +void pml4_free(volatile void *pml4); + #endif /* paging.h */ diff --git a/kernel/memory/physalloc.c b/kernel/memory/physalloc.c index dc8faa8..b164358 100644 --- a/kernel/memory/physalloc.c +++ b/kernel/memory/physalloc.c @@ -112,6 +112,9 @@ void free_phys_page(void *ptr) void free_phys_pages(void *ptr, int pages) { + if (ptr == NULL) + return; + long idx = page_idx(ptr); if (idx == -1) return; diff --git a/kernel/memory/virtalloc.c b/kernel/memory/virtalloc.c index 8a0d1ed..0f4de93 100644 --- a/kernel/memory/virtalloc.c +++ b/kernel/memory/virtalloc.c @@ -3,8 +3,6 @@ #include "virtalloc.h" -struct virt_ctx kernel_virt_ctx; - static struct virt_addr_node *get_node_idx(struct virt_ctx *ctx, int idx) { if (idx < BOOTSTRAP_VIRT_ALLOC_NODES) { @@ -88,7 +86,7 @@ void virtaddr_init(struct virt_ctx *ctx) .is_alloc = false, .is_used = true, }; - memsetv(ctx->bootstrap_nodes, 0, sizeof(ctx->bootstrap_nodes)); + memset(ctx, 0, sizeof(struct virt_ctx)); ctx->bootstrap_nodes[0] = init; ctx->alloc_nodes = NULL; ctx->start_node = &ctx->bootstrap_nodes[0]; @@ -169,6 +167,9 @@ void *virtaddr_alloc(struct virt_ctx *ctx, int n_pages) long virtaddr_free(struct virt_ctx *ctx, void *virtaddr) { + if (virtaddr == NULL) + return -1; + uintptr_t virt = (uintptr_t)virtaddr; if (virt % PAGE_SIZE) @@ -188,3 +189,8 @@ long virtaddr_free(struct virt_ctx *ctx, void *virtaddr) return -1; } + +void virtaddr_cleanup(struct virt_ctx *ctx) +{ + kfree(ctx->alloc_nodes); +} diff --git a/kernel/memory/virtalloc.h b/kernel/memory/virtalloc.h index 9f974c5..7bf8b91 100644 --- a/kernel/memory/virtalloc.h +++ b/kernel/memory/virtalloc.h @@ -66,4 +66,9 @@ void *virtaddr_alloc(struct virt_ctx *ctx, int pages); */ long virtaddr_free(struct virt_ctx *ctx, void *virtaddr); +/** + * Cleans up heap allocations and frees the virtalloc context + */ +void virtaddr_cleanup(struct virt_ctx *ctx); + #endif /* virtalloc.h */ diff --git a/kernel/procs.c b/kernel/procs.c index a8352b0..9cde22f 100644 --- a/kernel/procs.c +++ b/kernel/procs.c @@ -25,74 +25,25 @@ pcb_queue_t waiting; pcb_queue_t sleeping; pcb_queue_t zombie; -// pointer to the currently-running process -struct pcb *current; - /// pointer to the currently-running process -struct pcb *current; +struct pcb *current_pcb = NULL; + +/// pointer to the pcb for the 'init' process +struct pcb *init_pcb = NULL; /// the process table struct pcb ptable[N_PROCS]; /// next avaliable pid -pid_t next_pid; - -/// pointer to the pcb for the 'init' process -struct pcb *init_pcb; - -/// table of state name strings -const char *proc_state_str[N_PROC_STATES] = { - [PROC_STATE_UNUSED] = "Unu", [PROC_STATE_NEW] = "New", - [PROC_STATE_READY] = "Rdy", [PROC_STATE_RUNNING] = "Run", - [PROC_STATE_SLEEPING] = "Slp", [PROC_STATE_BLOCKED] = "Blk", - [PROC_STATE_WAITING] = "Wat", [PROC_STATE_KILLED] = "Kil", - [PROC_STATE_ZOMBIE] = "Zom", -}; - -/// table of priority name strings -const char *proc_prio_str[N_PROC_PRIOS] = { - [PROC_PRIO_HIGH] = "High", - [PROC_PRIO_STD] = "User", - [PROC_PRIO_LOW] = "Low ", - [PROC_PRIO_DEFERRED] = "Def ", -}; +pid_t next_pid = 0; -/// table of queue ordering name strings -const char *pcb_ord_str[N_PCB_ORDERINGS] = { - [O_PCB_FIFO] = "FIFO", - [O_PCB_PRIO] = "PRIO", - [O_PCB_PID] = "PID ", - [O_PCB_WAKEUP] = "WAKE", -}; - -/** - * Priority search functions. These are used to traverse a supplied - * queue looking for the queue entry that would precede the supplied - * PCB when that PCB is inserted into the queue. - * - * Variations: - * find_prev_wakeup() compares wakeup times - * find_prev_priority() compares process priorities - * find_prev_pid() compares PIDs - * - * Each assumes the queue should be in ascending order by the specified - * comparison value. - * - * @param[in] queue The queue to search - * @param[in] pcb The PCB to look for - * - * @return a pointer to the predecessor in the queue, or NULL if - * this PCB would be at the beginning of the queue. - */ static struct pcb *find_prev_wakeup(pcb_queue_t queue, struct pcb *pcb) { - // sanity checks! assert(queue != NULL, "find_prev_wakeup: queue is null"); assert(pcb != NULL, "find_prev_wakeup: pcb is null"); struct pcb *prev = NULL; struct pcb *curr = queue->head; - while (curr != NULL && curr->wakeup <= pcb->wakeup) { prev = curr; curr = curr->next; @@ -103,13 +54,11 @@ static struct pcb *find_prev_wakeup(pcb_queue_t queue, struct pcb *pcb) static struct pcb *find_prev_priority(pcb_queue_t queue, struct pcb *pcb) { - // sanity checks! assert(queue != NULL, "find_prev_priority: queue is null"); assert(pcb != NULL, "find_prev_priority: pcb is null"); struct pcb *prev = NULL; struct pcb *curr = queue->head; - while (curr != NULL && curr->priority <= pcb->priority) { prev = curr; curr = curr->next; @@ -120,13 +69,11 @@ static struct pcb *find_prev_priority(pcb_queue_t queue, struct pcb *pcb) static struct pcb *find_prev_pid(pcb_queue_t queue, struct pcb *pcb) { - // sanity checks! assert(queue != NULL, "find_prev_pid: queue is null"); assert(pcb != NULL, "find_prev_pid: pcb is null"); struct pcb *prev = NULL; struct pcb *curr = queue->head; - while (curr != NULL && curr->pid <= pcb->pid) { prev = curr; curr = curr->next; @@ -145,7 +92,7 @@ static struct pcb *find_prev_pid(pcb_queue_t queue, struct pcb *pcb) void pcb_init(void) { // there is no current process - current = NULL; + current_pcb = NULL; // set up the external links to the queues QINIT(pcb_freelist, O_PCB_FIFO); @@ -154,12 +101,8 @@ void pcb_init(void) QINIT(sleeping, O_PCB_WAKEUP); QINIT(zombie, O_PCB_PID); - // We statically allocate our PCBs, so we need to add them - // to the freelist before we can use them. If this changes - // so that we dynamically allocate PCBs, this step either - // won't be required, or could be used to pre-allocate some - // number of PCB structures for future use. - + // setup pcb linked list (free list) + // this can be done by calling pcb_free :) struct pcb *ptr = ptable; for (int i = 0; i < N_PROCS; ++i) { pcb_free(ptr); @@ -169,12 +112,11 @@ void pcb_init(void) int pcb_alloc(struct pcb **pcb) { - // sanity check! assert(pcb != NULL, "pcb_alloc: allocating a non free pcb pointer"); // remove the first PCB from the free list struct pcb *tmp; - if (pcb_queue_remove(pcb_freelist, &tmp) != SUCCESS) + if (pcb_queue_pop(pcb_freelist, &tmp) != SUCCESS) return E_NO_PCBS; *pcb = tmp; @@ -197,208 +139,125 @@ void pcb_free(struct pcb *pcb) } } -void pcb_zombify(register struct pcb *victim) +void pcb_zombify(struct pcb *victim) { - // should this be an error? if (victim == NULL) return; - // every process must have a parent, even if it's 'init' + assert(victim->pid != 1, + "pcb_zombify: attemped to zombie the init process"); assert(victim->parent != NULL, "pcb_zombify: process missing a parent"); - // We need to locate the parent of this process. We also need - // to reparent any children of this process. We do these in - // a single loop. struct pcb *parent = victim->parent; struct pcb *zchild = NULL; + struct pcb *curr = ptable; - // two PIDs we will look for - pid_t vicpid = victim->pid; - - // speed up access to the process table entries - register struct pcb *curr = ptable; - + // find all children of victim and reparent for (int i = 0; i < N_PROCS; ++i, ++curr) { - // make sure this is a valid entry + // is this a valid entry? if (curr->state == PROC_STATE_UNUSED) continue; - // if this is our parent, just keep going - we continue - // iterating to find all the children of this process. - if (curr == parent) + // is this not our child? + if (curr->parent != victim) continue; - if (curr->parent == victim) { - // found a child - reparent it - curr->parent = init_pcb; + // reparent to init + curr->parent = init_pcb; - // see if this child is already undead - if (curr->state == PROC_STATE_ZOMBIE) { - // if it's already a zombie, remember it, so we - // can pass it on to 'init'; also, if there are - // two or more zombie children, it doesn't matter - // which one we pick here, as the others will be - // collected when 'init' loops - zchild = curr; - } + // if this child is a zombie + if (curr->state == PROC_STATE_ZOMBIE) { + // if it's already a zombie, remember it, so we + // can pass it on to 'init'; also, if there are + // two or more zombie children, it doesn't matter + // which one we pick here, as the others will be + // collected when 'init' loops + zchild = curr; } } - // If we found a child that was already terminated, we need to - // wake up the init process if it's already waiting. - // - // NOTE: we only need to do this for one Zombie child process - - // init will loop and collect the others after it finishes with - // this one. - // - // Also note: it's possible that the exiting process' parent is - // also init, which means we're letting one of zombie children - // of the exiting process be cleaned up by init before the - // existing process itself is cleaned up by init. This will work, - // because after init cleans up the zombie, it will loop and - // call waitpid() again, by which time this exiting process will - // be marked as a zombie. - + // schedule init if zombie child found if (zchild != NULL && init_pcb->state == PROC_STATE_WAITING) { - // dequeue the zombie - assert(pcb_queue_remove_this(zombie, zchild) == SUCCESS, + assert(pcb_queue_remove(zombie, zchild) == SUCCESS, "pcb_zombify: cannot remove zombie process from queue"); - - assert(pcb_queue_remove_this(waiting, init_pcb) == SUCCESS, + assert(pcb_queue_remove(waiting, init_pcb) == SUCCESS, "pcb_zombify: cannot remove waiting process from queue"); - // intrinsic return value is the PID + // send exited pid to init PCB_RET(init_pcb) = zchild->pid; - - // may also want to return the exit status - int64_t *ptr = (int64_t *)PCB_ARG(init_pcb, 2); - + // set &status in init's waitpid call + int *ptr = (int *)PCB_ARG2(init_pcb); if (ptr != NULL) { - // BUG: - // ******************************************************** - // ** Potential VM issue here! This code assigns the exit - // ** status into a variable in the parent's address space. - // ** This works in the baseline because we aren't using - // ** any type of memory protection. If address space - // ** separation is implemented, this code will very likely - // ** STOP WORKING, and will need to be fixed. - // ******************************************************** + mem_ctx_switch(init_pcb->memctx); *ptr = zchild->exit_status; + mem_ctx_switch(kernel_mem_ctx); } - // all done - schedule 'init', and clean up the zombie + // schedule init and cleanup child schedule(init_pcb); pcb_cleanup(zchild); } - // Now, deal with the parent of this process. If the parent is - // already waiting, just wake it up and clean up this process. - // Otherwise, this process becomes a zombie. - // - // NOTE: if the exiting process' parent is init and we just woke - // init up to deal with a zombie child of the exiting process, - // init's status won't be Waiting any more, so we don't have to - // worry about it being scheduled twice. - + // if the parent is waiting, wake it up and clean the victim, + // otherwise the victim will become a zombie if (parent->state == PROC_STATE_WAITING) { // verify that the parent is either waiting for this process // or is waiting for any of its children - uint64_t target = PCB_ARG(parent, 1); - - if (target == 0 || target == vicpid) { - // the parent is waiting for this child or is waiting - // for any of its children, so we can wake it up. - - // intrinsic return value is the PID - PCB_RET(parent) = vicpid; - - // may also want to return the exit status - int64_t *ptr = (int64_t *)PCB_ARG(parent, 2); + uint64_t target = PCB_ARG1(parent); + if (target != 0 || target == victim->pid) { + // send exited pid to parent + PCB_RET(parent) = victim->pid; + // send &status to parent + int *ptr = (int *)PCB_ARG2(parent); if (ptr != NULL) { - // ******************************************************** - // ** Potential VM issue here! This code assigns the exit - // ** status into a variable in the parent's address space. - // ** This works in the baseline because we aren't using - // ** any type of memory protection. If address space - // ** separation is implemented, this code will very likely - // ** STOP WORKING, and will need to be fixed. - // ******************************************************** + mem_ctx_switch(parent->memctx); *ptr = victim->exit_status; + mem_ctx_switch(kernel_mem_ctx); } - // all done - schedule the parent, and clean up the zombie + // schedule the parent, and clean up the zombie schedule(parent); pcb_cleanup(victim); - return; } } - // The parent isn't waiting OR is waiting for a specific child - // that isn't this exiting process, so we become a Zombie. - // - // This code assumes that Zombie processes are *not* in - // a queue, but instead are just in the process table with - // a state of 'Zombie'. This simplifies life immensely, - // because we won't need to dequeue it when it is collected - // by its parent. - victim->state = PROC_STATE_ZOMBIE; assert(pcb_queue_insert(zombie, victim) == SUCCESS, "cannot insert victim process into zombie queue"); - - // Note: we don't call _dispatch() here - we leave that for - // the calling routine, as it's possible we don't need to - // choose a new current process. } void pcb_cleanup(struct pcb *pcb) { - // avoid deallocating a NULL pointer - if (pcb == NULL) { - // should this be an error? + if (pcb == NULL) return; - } - - // we need to release all the VM data structures and frames - mem_ctx_free(pcb->memctx); - // TODO: close open files - - // release the PCB itself + if (pcb->memctx) + mem_ctx_free(pcb->memctx); pcb_free(pcb); } struct pcb *pcb_find_pid(pid_t pid) { - // must be a valid PID - if (pid < 1) { + if (pid < 1) return NULL; - } - // scan the process table struct pcb *p = ptable; - for (int i = 0; i < N_PROCS; ++i, ++p) { if (p->pid == pid && p->state != PROC_STATE_UNUSED) { return p; } } - // didn't find it! return NULL; } struct pcb *pcb_find_ppid(pid_t pid) { - // must be a valid PID - if (pid < 1) { + if (pid < 1) return NULL; - } - // scan the process table struct pcb *p = ptable; - for (int i = 0; i < N_PROCS; ++i, ++p) { assert(p->parent != NULL, "pcb_find_ppid: process does not have a parent"); @@ -407,50 +266,33 @@ struct pcb *pcb_find_ppid(pid_t pid) } } - // didn't find it! return NULL; } int pcb_queue_reset(pcb_queue_t queue, enum pcb_queue_order style) { - // sanity check assert(queue != NULL, "pcb_queue_reset: queue is null"); - // make sure the style is valid - if (style < 0 || style >= N_PCB_ORDERINGS) { + if (style < 0 || style >= N_PCB_ORDERINGS) return E_BAD_PARAM; - } - // reset the queue queue->head = queue->tail = NULL; queue->order = style; - return SUCCESS; } bool pcb_queue_empty(pcb_queue_t queue) { - // if there is no queue, blow up assert(queue != NULL, "pcb_queue_empty: queue is empty"); - return PCB_QUEUE_EMPTY(queue); } -/** - * Return the count of elements in the specified queue. - * - * @param[in] queue The queue to check - * @return the count (0 if the queue is empty) - */ size_t pcb_queue_length(const pcb_queue_t queue) { - // sanity check assert(queue != NULL, "pcb_queue_length: queue is null"); - // this is pretty simple - register struct pcb *tmp = queue->head; - register size_t num = 0; - + struct pcb *tmp = queue->head; + size_t num = 0; while (tmp != NULL) { ++num; tmp = tmp->next; @@ -461,27 +303,19 @@ size_t pcb_queue_length(const pcb_queue_t queue) int pcb_queue_insert(pcb_queue_t queue, struct pcb *pcb) { - // sanity checks assert(queue != NULL, "pcb_queue_insert: queue is null"); assert(pcb != NULL, "pcb_queue_insert: pcb is null"); - // if this PCB is already in a queue, we won't touch it - if (pcb->next != NULL) { - // what to do? we let the caller decide + if (pcb->next != NULL) return E_BAD_PARAM; - } - // is the queue empty? if (queue->head == NULL) { queue->head = queue->tail = pcb; return SUCCESS; } assert(queue->tail != NULL, "pcb_queue_insert: queue tail is null"); - // no, so we need to search it struct pcb *prev = NULL; - - // find the predecessor node switch (queue->order) { case O_PCB_FIFO: prev = queue->tail; @@ -496,12 +330,10 @@ int pcb_queue_insert(pcb_queue_t queue, struct pcb *pcb) prev = find_prev_wakeup(queue, pcb); break; default: - // do we need something more specific here? return E_BAD_PARAM; } - // OK, we found the predecessor node; time to do the insertion - + // found the predecessor node, time to do the insertion if (prev == NULL) { // there is no predecessor, so we're // inserting at the front of the queue @@ -511,12 +343,10 @@ int pcb_queue_insert(pcb_queue_t queue, struct pcb *pcb) queue->tail = pcb; } queue->head = pcb; - } else if (prev->next == NULL) { // append at end prev->next = pcb; queue->tail = pcb; - } else { // insert between prev & prev->next pcb->next = prev->next; @@ -526,51 +356,35 @@ int pcb_queue_insert(pcb_queue_t queue, struct pcb *pcb) return SUCCESS; } -int pcb_queue_remove(pcb_queue_t queue, struct pcb **pcb) +int pcb_queue_pop(pcb_queue_t queue, struct pcb **pcb) { - //sanity checks - assert(queue != NULL, "pcb_queue_remove: queue is null"); - assert(pcb != NULL, "pcb_queue_remove: pcb is null"); + assert(queue != NULL, "pcb_queue_pop: queue is null"); + assert(pcb != NULL, "pcb_queue_pop: pcb is null"); - // can't get anything if there's nothing to get! - if (PCB_QUEUE_EMPTY(queue)) { + if (PCB_QUEUE_EMPTY(queue)) return E_EMPTY_QUEUE; - } - // take the first entry from the queue struct pcb *tmp = queue->head; queue->head = tmp->next; - - // disconnect it completely tmp->next = NULL; - - // was this the last thing in the queue? if (queue->head == NULL) { - // yes, so clear the tail pointer for consistency queue->tail = NULL; } - // save the pointer *pcb = tmp; - return SUCCESS; } -int pcb_queue_remove_this(pcb_queue_t queue, struct pcb *pcb) +int pcb_queue_remove(pcb_queue_t queue, struct pcb *pcb) { - //sanity checks - assert(queue != NULL, "pcb_queue_remove_this: queue is null"); - assert(pcb != NULL, "pcb_queue_remove_this: pcb is null"); + assert(queue != NULL, "pcb_queue_remove: queue is null"); + assert(pcb != NULL, "pcb_queue_remove: pcb is null"); - // can't get anything if there's nothing to get! - if (PCB_QUEUE_EMPTY(queue)) { + if (PCB_QUEUE_EMPTY(queue)) return E_EMPTY_QUEUE; - } - // iterate through the queue until we find the desired PCB struct pcb *prev = NULL; struct pcb *curr = queue->head; - while (curr != NULL && curr != pcb) { prev = curr; curr = curr->next; @@ -587,8 +401,7 @@ int pcb_queue_remove_this(pcb_queue_t queue, struct pcb *pcb) if (curr == NULL) { // case 1 - assert(prev != NULL, - "pcb_queue_remove_this: prev element in queue is null"); + assert(prev != NULL, "pcb_queue_remove: prev element in queue is null"); // case 4 return E_NOT_FOUND; } @@ -618,239 +431,45 @@ int pcb_queue_remove_this(pcb_queue_t queue, struct pcb *pcb) // there's a possible consistancy problem here if somehow // one of the queue pointers is NULL and the other one // is not NULL - assert((queue->head == NULL && queue->tail == NULL) || (queue->head != NULL && queue->tail != NULL), - "pcb_queue_remove_this: queue consistancy problem"); + "pcb_queue_remove: queue consistancy problem"); return SUCCESS; } struct pcb *pcb_queue_peek(const pcb_queue_t queue) { - //sanity check assert(queue != NULL, "pcb_queue_peek: queue is null"); - // can't get anything if there's nothing to get! - if (PCB_QUEUE_EMPTY(queue)) { + if (PCB_QUEUE_EMPTY(queue)) return NULL; - } - // just return the first entry from the queue return queue->head; } void schedule(struct pcb *pcb) { - // sanity check assert(pcb != NULL, "schedule: pcb is null"); - // check for a killed process if (pcb->state == PROC_STATE_KILLED) panic("attempted to schedule killed process %d", pcb->pid); - // mark it as ready pcb->state = PROC_STATE_READY; - // add it to the ready queue if (pcb_queue_insert(ready, pcb) != SUCCESS) panic("schedule insert fail"); } void dispatch(void) { - // verify that there is no current process - assert(current == NULL, "dispatch: current process is not null"); + assert(current_pcb == NULL, "dispatch: current process is not null"); - // grab whoever is at the head of the queue - int status = pcb_queue_remove(ready, ¤t); - if (status != SUCCESS) { + int status = pcb_queue_pop(ready, ¤t_pcb); + if (status != SUCCESS) panic("dispatch queue remove failed, code %d", status); - } // set the process up for success - current->state = PROC_STATE_RUNNING; - current->ticks = PROC_QUANTUM_STANDARD; -} - -void ctx_dump(const char *msg, register struct cpu_regs *regs) -{ - // first, the message (if there is one) - if (msg) - kputs(msg); - - // the pointer - kprintf(" @ %16p: ", (void *)regs); - - // if it's NULL, why did you bother calling me? - if (regs == NULL) { - kprintf(" NULL???\n"); - return; - } - - // now, the contents - kputc('\n'); - cpu_print_regs(regs); -} - -void ctx_dump_all(const char *msg) -{ - // first, the message (if there is one) - if (msg) - kputs(msg); - - int n = 0; - register struct pcb *pcb = ptable; - for (int i = 0; i < N_PROCS; ++i, ++pcb) { - if (pcb->state != PROC_STATE_UNUSED) { - ++n; - kprintf("%2d(%d): ", n, pcb->pid); - ctx_dump(NULL, pcb->regs); - } - } -} - -void pcb_dump(const char *msg, register struct pcb *pcb, bool all) -{ - // first, the message (if there is one) - if (msg) - kputs(msg); - - // the pointer - kprintf(" @ %16px:", (void *)pcb); - - // if it's NULL, why did you bother calling me? - if (pcb == NULL) { - kputs(" NULL???\n"); - return; - } - - kprintf(" %d", pcb->pid); - kprintf(" %s", - pcb->state >= N_PROC_STATES ? "???" : proc_state_str[pcb->state]); - - if (!all) { - // just printing IDs and states on one line - return; - } - - // now, the rest of the contents - kprintf(" %s", pcb->priority >= N_PROC_PRIOS ? - "???" : - proc_prio_str[pcb->priority]); - - kprintf(" ticks %zu xit %d wake %16lx\n", pcb->ticks, pcb->exit_status, - pcb->wakeup); - - kprintf(" parent %16p", (void *)pcb->regs); - if (pcb->parent != NULL) { - kprintf(" (%u)", pcb->parent->pid); - } - - kprintf(" next %16p context %16p memctx %16p", (void *)pcb->next, - (void *)pcb->regs, (void *)pcb->memctx); - - kputc('\n'); -} - -void pcb_queue_dump(const char *msg, pcb_queue_t queue, bool contents) -{ - // report on this queue - kprintf("%s: ", msg); - if (queue == NULL) { - kputs("NULL???\n"); - return; - } - - // first, the basic data - kprintf("head %16p tail %16p", (void *)queue->head, (void *)queue->tail); - - // next, how the queue is ordered - kprintf(" order %s\n", queue->order >= N_PCB_ORDERINGS ? - "????" : - pcb_ord_str[queue->order]); - - // if there are members in the queue, dump the first few PIDs - if (contents && queue->head != NULL) { - kputs(" PIDs: "); - struct pcb *tmp = queue->head; - for (int i = 0; i < 5 && tmp != NULL; ++i, tmp = tmp->next) { - kprintf(" [%u]", tmp->pid); - } - - if (tmp != NULL) { - kputs(" ..."); - } - - kputc('\n'); - } -} - -void ptable_dump(const char *msg, bool all) -{ - if (msg) - kputs(msg); - kputc(' '); - - int used = 0; - int empty = 0; - - register struct pcb *pcb = ptable; - for (int i = 0; i < N_PROCS; ++i) { - if (pcb->state == PROC_STATE_UNUSED) { - // an empty slot - ++empty; - - } else { - // a non-empty slot - ++used; - - // if not dumping everything, add commas if needed - if (!all && used) { - kputc(','); - } - - // report the table slot # - kprintf(" #%d:", i); - - // and dump the contents - pcb_dump(NULL, pcb, all); - } - } - - // only need this if we're doing one-line output - if (!all) { - kputc('\n'); - } - - // sanity check - make sure we saw the correct number of table slots - if ((used + empty) != N_PROCS) { - kprintf("Table size %d, used %d + empty %d = %d???\n", N_PROCS, used, - empty, used + empty); - } -} - -void ptable_dump_counts(void) -{ - size_t nstate[N_PROC_STATES] = { 0 }; - size_t unknown = 0; - - int n = 0; - struct pcb *ptr = ptable; - while (n < N_PROCS) { - if (ptr->state < 0 || ptr->state >= N_PROC_STATES) { - ++unknown; - } else { - ++nstate[ptr->state]; - } - ++n; - ++ptr; - } - - kprintf("Ptable: %zu ***", unknown); - for (n = 0; n < N_PROC_STATES; ++n) { - kprintf(" %zu %s", nstate[n], - proc_state_str[n] != NULL ? proc_state_str[n] : "???"); - } - kputc('\n'); + current_pcb->state = PROC_STATE_RUNNING; + current_pcb->ticks = 3; // ticks per process } diff --git a/kernel/user.c b/kernel/user.c new file mode 100644 index 0000000..0a237e9 --- /dev/null +++ b/kernel/user.c @@ -0,0 +1,11 @@ +#include <comus/procs.h> +#include <comus/memory.h> + +void user_cleanup(struct pcb *pcb) +{ + if (pcb == NULL) + return; + + mem_ctx_free(pcb->memctx); + pcb->memctx = NULL; +} |