summaryrefslogtreecommitdiff
path: root/kernel/old/user.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/old/user.c')
-rw-r--r--kernel/old/user.c783
1 files changed, 0 insertions, 783 deletions
diff --git a/kernel/old/user.c b/kernel/old/user.c
deleted file mode 100644
index c41867e..0000000
--- a/kernel/old/user.c
+++ /dev/null
@@ -1,783 +0,0 @@
-/**
-** @file user.c
-**
-** @author CSCI-452 class of 20245
-**
-** @brief User-level code manipulation routines
-*/
-
-#define KERNEL_SRC
-
-#include <common.h>
-
-#include <bootstrap.h>
-#include <elf.h>
-#include <user.h>
-#include <vm.h>
-
-/*
-** PRIVATE DEFINITIONS
-*/
-
-/*
-** PRIVATE DATA TYPES
-*/
-
-/*
-** PRIVATE GLOBAL VARIABLES
-*/
-
-/*
-** PUBLIC GLOBAL VARIABLES
-*/
-
-/*
-** Location of the "user blob" in memory.
-**
-** These variables are filled in by the code in startup.S using values
-** passed to it from the bootstrap.
-**
-** These are visible so that the startup code can find them.
-*/
-uint16_t user_offset; // byte offset from the segment base
-uint16_t user_segment; // segment base address
-uint16_t user_sectors; // number of 512-byte sectors it occupies
-
-header_t *user_header; // filled in by the user_init routine
-prog_t *prog_table; // filled in by the user_init routine
-
-/*
-** PRIVATE FUNCTIONS
-*/
-
-#if TRACING_ELF
-
-/*
-** This is debugging support code; if not debugging the ELF
-** handling code, it won't be compiled into the kernel.
-*/
-
-// buffer used by some of these functions
-static char ebuf[16];
-
-/*
-** File header functions
-*/
-
-// interpret the file class
-static const char *fh_eclass( e32_si class ) {
- switch( class ) {
- case ELF_CLASS_NONE: return( "None" ); break;
- case ELF_CLASS_32: return( "EC32" ); break;
- case ELF_CLASS_64: return( "EC64" ); break;
- }
- return( "????" );
-}
-
-// interpret the data encoding
-static const char *fh_edata( e32_si data ) {
- switch( data ) {
- case ELF_DATA_NONE: return( "Invd" ); break;
- case ELF_DATA_2LSB: return( "2CLE" ); break;
- case ELF_DATA_2MSB: return( "2CBE" ); break;
- }
- return( "????" );
-}
-
-// interpret the file type
-static const char *fh_htype( e32_h type ) {
- switch( type ) {
- case ET_NONE: return( "none" ); break;
- case ET_REL: return( "rel" ); break;
- case ET_EXEC: return( "exec" ); break;
- case ET_DYN: return( "dyn" ); break;
- case ET_CORE: return( "core" ); break;
- default:
- if( type >= ET_LO_OS && type <= ET_HI_OS )
- return( "OSsp" );
- else if( type >= ET_LO_CP && type <= ET_HI_CP )
- return( "CPsp" );
- }
- sprint( ebuf, "0x%04x", type );
- return( (const char *) ebuf );
-}
-
-// interpret the machine type
-static const char *fh_mtype( e32_h machine ) {
- switch( machine ) {
- case EM_NONE: return( "None" ); break;
- case EM_386: return( "386" ); break;
- case EM_ARM: return( "ARM" ); break;
- case EM_X86_64: return( "AMD64" ); break;
- case EM_AARCH64: return( "AARCH64" ); break;
- case EM_RISCV: return( "RISC-V" ); break;
- }
- return( "Other" );
-}
-
-// dump the program header
-static void dump_fhdr( elfhdr_t *hdr ) {
- cio_puts( "File header: magic " );
- for( int i = EI_MAG0; i <= EI_MAG3; ++i )
- put_char_or_code( hdr->e_ident.bytes[i] );
- cio_printf( " class %s", fh_eclass(hdr->e_ident.f.class) );
- cio_printf( " enc %s", fh_edata(hdr->e_ident.f.data) );
- cio_printf( " ver %u\n", hdr->e_ident.f.version );
- cio_printf( " type %s", fh_htype(hdr->e_type) );
- cio_printf( " mach %s", fh_mtype(hdr->e_machine) );
- cio_printf( " vers %d", hdr->e_version );
- cio_printf( " entr %08x\n", hdr->e_entry );
-
- cio_printf( " phoff %08x", hdr->e_phoff );
- cio_printf( " shoff %08x", hdr->e_shoff );
- cio_printf( " flags %08x", (uint32_t) hdr->e_flags );
- cio_printf( " ehsize %u\n", hdr->e_ehsize );
- cio_printf( " phentsize %u", hdr->e_phentsize );
- cio_printf( " phnum %u", hdr->e_phnum );
- cio_printf( " shentsize %u", hdr->e_shentsize );
- cio_printf( " shnum %u", hdr->e_shnum );
- cio_printf( " shstrndx %u\n", hdr->e_shstrndx );
-}
-
-/*
-** Program header functions
-*/
-
-// categorize the header type
-static const char *ph_type( e32_w type ) {
- switch( type ) {
- case PT_NULL: return( "Unused" ); break;
- case PT_LOAD: return( "Load" ); break;
- case PT_DYNAMIC: return( "DLI" ); break;
- case PT_INTERP: return( "Interp" ); break;
- case PT_NOTE: return( "Aux" ); break;
- case PT_SHLIB: return( "RSVD" ); break;
- case PT_PHDR: return( "PTentry" ); break;
- case PT_TLS: return( "TLS" ); break;
- default:
- if( type >= PT_LO_OS && type <= PT_HI_OS )
- return( "OSsp" );
- else if( type >= PT_LO_CP && type <= PT_HI_CP )
- return( "CPsp" );
- }
- sprint( ebuf, "0x%08x", type );
- return( (const char *) ebuf );
-}
-
-// report the individual flags
-static void ph_flags( e32_w flags ) {
- if( (flags & PF_R) != 0 ) cio_putchar( 'R' );
- if( (flags & PF_W) != 0 ) cio_putchar( 'W' );
- if( (flags & PF_E) != 0 ) cio_putchar( 'X' );
-}
-
-// dump a program header
-static void dump_phdr( elfproghdr_t *hdr, int n ) {
- cio_printf( "Prog header %d, type %s\n", n, ph_type(hdr->p_type) );
- cio_printf( " offset %08x", hdr->p_offset );
- cio_printf( " va %08x", hdr->p_va );
- cio_printf( " pa %08x\n", hdr->p_pa );
- cio_printf( " filesz %08x", hdr->p_filesz );
- cio_printf( " memsz %08x", hdr->p_memsz );
- cio_puts( " flags " );
- ph_flags( hdr->p_flags );
- cio_printf( " align %08x", hdr->p_align );
- cio_putchar( '\n' );
-}
-
-/*
-** Section header functions
-*/
-
-// interpret the header type
-static const char *sh_type( e32_w type ) {
- switch( type ) {
- case SHT_NULL: return( "Unused" ); break;
- case SHT_PROGBITS: return( "Progbits" ); break;
- case SHT_SYMTAB: return( "Symtab" ); break;
- case SHT_STRTAB: return( "Strtab" ); break;
- case SHT_RELA: return( "Rela" ); break;
- case SHT_HASH: return( "Hash" ); break;
- case SHT_DYNAMIC: return( "Dynamic" ); break;
- case SHT_NOTE: return( "Note" ); break;
- case SHT_NOBITS: return( "Nobits" ); break;
- case SHT_REL: return( "Rel" ); break;
- case SHT_SHLIB: return( "Shlib" ); break;
- case SHT_DYNSYM: return( "Dynsym" ); break;
- default:
- if( type >= SHT_LO_CP && type <= SHT_HI_CP )
- return( "CCsp" );
- else if( type >= SHT_LO_US && type <= SHT_HI_US )
- return( "User" );
- }
- sprint( ebuf, "0x%08x", type );
- return( (const char *) ebuf );
-}
-
-// report the various flags
-static void sh_flags( unsigned int flags ) {
- if( (flags & SHF_WRITE) != 0 ) cio_putchar( 'W' );
- if( (flags & SHF_ALLOC) != 0 ) cio_putchar( 'A' );
- if( (flags & SHF_EXECINSTR) != 0 ) cio_putchar( 'X' );
- if( (flags & SHF_MERGE) != 0 ) cio_putchar( 'M' );
- if( (flags & SHF_STRINGS) != 0 ) cio_putchar( 'S' );
- if( (flags & SHF_INFO_LINK) != 0 ) cio_putchar( 'L' );
- if( (flags & SHF_LINK_ORDER) != 0 ) cio_putchar( 'o' );
- if( (flags & SHF_OS_NONCON) != 0 ) cio_putchar( 'n' );
- if( (flags & SHF_GROUP) != 0 ) cio_putchar( 'g' );
- if( (flags & SHF_TLS) != 0 ) cio_putchar( 't' );
-}
-
-// dump a section header
-ATTR_UNUSED
-static void dump_shdr( elfsecthdr_t *hdr, int n ) {
- cio_printf( "Sect header %d, type %d (%s), name %s\n",
- n, hdr->sh_type, sh_type(hdr->sh_type) );
- cio_printf( " flags %08x ", (uint32_t) hdr->sh_flags );
- sh_flags( hdr->sh_flags );
- cio_printf( " addr %08x", hdr->sh_addr );
- cio_printf( " offset %08x", hdr->sh_offset );
- cio_printf( " size %08x\n", hdr->sh_size );
- cio_printf( " link %08x", hdr->sh_link );
- cio_printf( " info %08x", hdr->sh_info );
- cio_printf( " align %08x", hdr->sh_addralign );
- cio_printf( " entsz %08x\n", hdr->sh_entsize );
-}
-#endif
-
-/**
-** read_phdrs(addr,phoff,phentsize,phnum)
-**
-** Parses the ELF program headers and each segment described into memory.
-**
-** @param hdr Pointer to the program header
-** @param pcb Pointer to the PCB (and its PDE)
-**
-** @return status of the attempt:
-** SUCCESS everything loaded correctly
-** E_LOAD_LIMIT more than N_LOADABLE PT_LOAD sections
-** other status returned from vm_add()
-*/
-static int read_phdrs( elfhdr_t *hdr, pcb_t *pcb ) {
-
- // sanity check
- assert1( hdr != NULL );
- assert2( pcb != NULL );
-
-#if TRACING_USER
- cio_printf( "read_phdrs(%08x,%08x)\n", (uint32_t) hdr, (uint32_t) pcb );
-#endif
-
- // iterate through the program headers
- uint_t nhdrs = hdr->e_phnum;
-
- // pointer to the first header table entry
- elfproghdr_t *curr = (elfproghdr_t *) ((uint32_t) hdr + hdr->e_phoff);
-
- // process them all
- int loaded = 0;
- for( uint_t i = 0; i < nhdrs; ++i, ++curr ) {
-
-#if TRACING_ELF
- dump_phdr( curr, i );
-#endif
- if( curr->p_type != PT_LOAD ) {
- // not loadable --> we'll skip it
- continue;
- }
-
- if( loaded >= N_LOADABLE ) {
-#if TRACING_USER
- cio_puts( " LIMIT\n" );
-#endif
- return E_LOAD_LIMIT;
- }
-
- // set a pointer to the bytes within the object file
- char *data = (char *) (((uint32_t)hdr) + curr->p_offset);
-#if TRACING_USER
- cio_printf( " data @ %08x", (uint32_t) data );
-#endif
-
- // copy the pages into memory
- int stat = vm_add( pcb->pdir, curr->p_flags & PF_W, false,
- (char *) curr->p_va, curr->p_memsz, data, curr->p_filesz );
- if( stat != SUCCESS ) {
- // TODO what else should we do here? check for memory leak?
- return stat;
- }
-
- // set the section table entry in the PCB
- pcb->sects[loaded].length = curr->p_memsz;
- pcb->sects[loaded].addr = curr->p_va;
-#if TRACING_USER
- cio_printf( " loaded %u @ %08x\n",
- pcb->sects[loaded].length, pcb->sects[loaded].addr );
-#endif
- ++loaded;
- }
-
- return SUCCESS;
-}
-
-/**
-** Name: stack_setup
-**
-** Set up the stack for a new process
-**
-** @param pcb Pointer to the PCB for the process
-** @param entry Entry point for the new process
-** @param args Argument vector to be put in place
-**
-** @return A pointer to the context_t on the stack, or NULL
-*/
-static context_t *stack_setup( pcb_t *pcb, uint32_t entry, const char **args ) {
-
- /*
- ** First, we need to count the space we'll need for the argument
- ** vector and strings.
- */
-
- int argbytes = 0;
- int argc = 0;
-
- while( args[argc] != NULL ) {
- int n = strlen( args[argc] ) + 1;
- // can't go over one page in size
- if( (argbytes + n) > SZ_PAGE ) {
- // oops - ignore this and any others
- break;
- }
- argbytes += n;
- ++argc;
- }
-
- // Round up the byte count to the next multiple of four.
- argbytes = (argbytes + 3) & MOD4_MASK;
-
- /*
- ** Allocate the arrays. We are safe using dynamic arrays here
- ** because we're using the OS stack, not the user stack.
- **
- ** We want the argstrings and argv arrays to contain all zeroes.
- ** The C standard states, in section 6.7.8, that
- **
- ** "21 If there are fewer initializers in a brace-enclosed list
- ** than there are elements or members of an aggregate, or
- ** fewer characters in a string literal used to initialize an
- ** array of known size than there are elements in the array,
- ** the remainder of the aggregate shall be initialized
- ** implicitly the same as objects that have static storage
- ** duration."
- **
- ** Sadly, because we're using variable-sized arrays, we can't
- ** rely on this, so we have to call memclr() instead. :-( In
- ** truth, it doesn't really cost us much more time, but it's an
- ** annoyance.
- */
-
- char argstrings[ argbytes ];
- char *argv[ argc + 1 ];
-
- CLEAR( argstrings );
- CLEAR( argv );
-
- // Next, duplicate the argument strings, and create pointers to
- // each one in our argv.
- char *tmp = argstrings;
- for( int i = 0; i < argc; ++i ) {
- int nb = strlen(args[i]) + 1; // bytes (incl. NUL) in this string
- strcpy( tmp, args[i] ); // add to our buffer
- argv[i] = tmp; // remember where it was
- tmp += nb; // move on
- }
-
- // trailing NULL pointer
- argv[argc] = NULL;
-
- /*
- ** The pages for the stack were cleared when they were allocated,
- ** so we don't need to remember to do that.
- **
- ** We reserve one longword at the bottom of the stack to hold a
- ** pointer to where argv is on the stack.
- **
- ** The user code was linked with a startup function that defines
- ** the entry point (_start), calls main(), and then calls exit()
- ** if main() returns. We need to set up the stack this way:
- **
- ** esp -> context <- context save area
- ** ... <- context save area
- ** context <- context save area
- ** entry_pt <- return address for the ISR
- ** argc <- argument count for main()
- ** /-> argv <- argv pointer for main()
- ** | ... <- argv array w/trailing NULL
- ** | ... <- argv character strings
- ** \--- ptr <- last word in stack
- **
- ** Stack alignment rules for the SysV ABI i386 supplement dictate that
- ** the 'argc' parameter must be at an address that is a multiple of 16;
- ** see below for more information.
- */
-
- // Pointer to the last word in stack. We get this from the
- // VM hierarchy. Get the PDE entry for the user address space.
- pde_t stack_pde = pcb->pdir[USER_PDE];
-
- // The PDE entry points to the PT, which is an array of PTE. The last
- // two entries are for the stack; pull out the last one.
- pte_t stack_pte = ((pte_t *)(stack_pde & MOD4K_MASK))[USER_STK_PTE2];
-
- // OK, now we have the PTE. The frame address of the last page is
- // in this PTE. Find the address immediately after that.
- uint32_t *ptr = (uint32_t *)
- ((uint32_t)(stack_pte & MOD4K_MASK) + SZ_PAGE);
-
- // Pointer to where the arg strings should be filled in.
- char *strings = (char *) ( (uint32_t) ptr - argbytes );
-
- // back the pointer up to the nearest word boundary; because we're
- // moving toward location 0, the nearest word boundary is just the
- // next smaller address whose low-order two bits are zeroes
- strings = (char *) ((uint32_t) strings & MOD4_MASK);
-
- // Copy over the argv strings.
- memcpy( (void *)strings, argstrings, argbytes );
-
- /*
- ** Next, we need to copy over the argv pointers. Start by
- ** determining where 'argc' should go.
- **
- ** Stack alignment is controlled by the SysV ABI i386 supplement,
- ** version 1.2 (June 23, 2016), which states in section 2.2.2:
- **
- ** "The end of the input argument area shall be aligned on a 16
- ** (32 or 64, if __m256 or __m512 is passed on stack) byte boundary.
- ** In other words, the value (%esp + 4) is always a multiple of 16
- ** (32 or 64) when control is transferred to the function entry
- ** point. The stack pointer, %esp, always points to the end of the
- ** latest allocated stack frame."
- **
- ** Isn't technical documentation fun? Ultimately, this means that
- ** the first parameter to main() should be on the stack at an address
- ** that is a multiple of 16.
- **
- ** The space needed for argc, argv, and the argv array itself is
- ** argc + 3 words (argc+1 for the argv entries, plus one word each
- ** for argc and argv). We back up that much from 'strings'.
- */
-
- int nwords = argc + 3;
- uint32_t *acptr = ((uint32_t *) strings) - nwords;
-
- /*
- ** Next, back up until we're at a multiple-of-16 address. Because we
- ** are moving to a lower address, its upper 28 bits are identical to
- ** the address we currently have, so we can do this with a bitwise
- ** AND to just turn off the lower four bits.
- */
-
- acptr = (uint32_t *) ( ((uint32_t)acptr) & MOD16_MASK );
-
- // copy in 'argc'
- *acptr = argc;
-
- // next, 'argv', which follows 'argc'; 'argv' points to the
- // word that follows it in the stack
- uint32_t *avptr = acptr + 2;
- *(acptr+1) = (uint32_t) avptr;
-
- /*
- ** Next, we copy in all argc+1 pointers.
- */
-
- // Adjust and copy the string pointers.
- for( int i = 0; i <= argc; ++i ) {
- if( argv[i] != NULL ) {
- // an actual pointer - adjust it and copy it in
- *avptr = (uint32_t) strings;
- // skip to the next entry in the array
- strings += strlen(argv[i]) + 1;
- } else {
- // end of the line!
- *avptr = NULL;
- }
- ++avptr;
- }
-
- /*
- ** Now, we need to set up the initial context for the executing
- ** process.
- **
- ** When this process is dispatched, the context restore code will
- ** pop all the saved context information off the stack, including
- ** the saved EIP, CS, and EFLAGS. We set those fields up so that
- ** the interrupt "returns" to the entry point of the process.
- */
-
- // Locate the context save area on the stack.
- context_t *ctx = ((context_t *) avptr) - 1;
-
- /*
- ** We cleared the entire stack earlier, so all the context
- ** fields currently contain zeroes. We now need to fill in
- ** all the important fields.
- */
-
- ctx->eflags = DEFAULT_EFLAGS; // IE enabled, PPL 0
- ctx->eip = entry; // initial EIP
- ctx->cs = GDT_CODE; // segment registers
- ctx->ss = GDT_STACK;
- ctx->ds = ctx->es = ctx->fs = ctx->gs = GDT_DATA;
-
- /*
- ** Return the new context pointer to the caller. It will be our
- ** caller's responsibility to schedule this process.
- */
-
- return( ctx );
-}
-
-/*
-** PUBLIC FUNCTIONS
-*/
-
-/**
-** Name: user_init
-**
-** Initializes the user support module.
-*/
-void user_init( void ) {
-
-#if TRACING_INIT
- cio_puts( " User" );
-#endif
-
- // This is gross, but we need to get this information somehow.
- // Access the "user blob" data in the second bootstrap sector
- uint16_t *blobdata = (uint16_t *) USER_BLOB_DATA;
- user_offset = *blobdata++;
- user_segment = *blobdata++;
- user_sectors = *blobdata++;
-
-#if TRACING_USER
- cio_printf( "\nUser blob: %u sectors @ %04x:%04x", user_sectors,
- user_segment, user_offset );
-#endif
-
- // calculate the location of the user blob
- if( user_sectors > 0 ) {
-
- // calculate the address of the header
- user_header = (header_t *)
- ( KERN_BASE +
- ( (((uint_t)user_segment) << 4) + ((uint_t)user_offset) )
- );
-
- // the program table immediate follows the blob header
- prog_table = (prog_t *) (user_header + 1);
-
-#if TRACING_USER
- cio_printf( ", hdr %08x, %u progs, tbl %08x\n", (uint32_t) user_header,
- user_header->num, (uint32_t) prog_table );
-#endif
-
- } else {
- // too bad, so sad!
- user_header = NULL;
- prog_table = NULL;
-#if TRACING_USER
- cio_putchar( '\n' );
-#endif
- }
-}
-
-/**
-** Name: user_locate
-**
-** Locates a user program in the user code archive.
-**
-** @param what The ID of the user program to find
-**
-** @return pointer to the program table entry in the code archive, or NULL
-*/
-prog_t *user_locate( uint_t what ) {
-
- // no programs if there is no blob!
- if( user_header == NULL ) {
- return NULL;
- }
-
- // make sure this is a reasonable program to request
- if( what >= user_header->num ) {
- // no such program!
- return NULL;
- }
-
- // find the entry in the program table
- prog_t *prog = &prog_table[what];
-
- // if there are no bytes, it's useless
- if( prog->size < 1 ) {
- return NULL;
- }
-
- // return the program table pointer
- return prog;
-}
-
-/**
-** Name: user_duplicate
-**
-** Duplicates the memory setup for an existing process.
-**
-** @param new The PCB for the new copy of the program
-** @param old The PCB for the existing the program
-**
-** @return the status of the duplicate attempt
-*/
-int user_duplicate( pcb_t *new, pcb_t *old ) {
-
- // We need to do a recursive duplication of the process address
- // space of the current process. First, we create a new user
- // page directory. Next, we'll duplicate the USER_PDE page
- // table. Finally, we'll go through that table and duplicate
- // all the frames.
-
- // create the initial VM hierarchy
- pde_t *pdir = vm_mkuvm();
- if( pdir == NULL ) {
- return E_NO_MEMORY;
- }
- new->pdir = pdir;
-
- // Next, add a USER_PDE page table that's a duplicate of the
- // current process' page table
- if( !vm_uvmdup(old->pdir,new->pdir) ) {
- // check for memory leak?
- return E_NO_MEMORY;
- }
-
- // We don't do copy-on-write, so we must duplicate all the
- // individual page frames. Iterate through all the user-level
- // PDE entries, and replace the existing frames with duplicates.
- //
- // NOTE: we only deal with pdir[0] here, as we are limiting
- // the user address space to the first 4MB. If the size of
- // the address space goes up, this code will need to be
- // modified to loop over the larger space.
-
- // pointer to the PMT for the user
- pte_t *pt = (pte_t *) (pdir[USER_PDE]);
- assert( pt != NULL );
-
- for( int i = 0; i < N_PTE; ++i ) {
- // get the current entry from the PMT
- pte_t entry = *pt;
-
- // if this entry is present,
- if( IS_PRESENT(entry) ) {
-
- // duplicate the frame pointed to by this PTE
- void *tmp = vm_pagedup( (void *) PTE_ADDR(entry) );
-
- // replace the old frame number with the new one
- *pt = (pte_t) (((uint32_t)tmp) | PERMS(entry) );
-
- } else {
-
- *pt = 0;
-
- }
- ++pt;
- }
-
- return SUCCESS;
-}
-
-/**
-** Name: user_load
-**
-** Loads a user program from the user code archive into memory.
-** Allocates all needed frames and sets up the VM tables.
-**
-** @param ptab A pointer to the program table entry to be loaded
-** @param pcb The PCB for the program being loaded
-** @param args The argument vector for the program
-**
-** @return the status of the load attempt
-*/
-int user_load( prog_t *ptab, pcb_t *pcb, const char **args ) {
-
- // NULL pointers are bad!
- assert1( ptab != NULL );
- assert1( pcb != NULL );
- assert1( args != NULL );
-
- // locate the ELF binary
- elfhdr_t *hdr = (elfhdr_t *) ((uint32_t)user_header + ptab->offset);
-
-#if TRACING_ELF
- cio_printf( "Load: ptab %08x: '%s', off %08x, size %08x, flags %08x\n",
- (uint32_t) ptab, ptab->name, ptab->offset, ptab->size,
- ptab->flags );
- cio_printf( " args %08x:", (uint32_t) args );
- for( int i = 0; args[i] != NULL; ++i ) {
- cio_printf( " [%d] %s", i, args[i] );
- }
- cio_printf( "\n pcb %08x (pid %u)\n", (uint32_t) pcb, pcb->pid );
- dump_fhdr( hdr );
-#endif
-
- // verify the ELF header
- if( hdr->e_ident.f.magic != ELF_MAGIC ) {
- return E_BAD_PARAM;
- }
-
- // allocate a page directory
- pcb->pdir = vm_mkuvm();
- if( pcb->pdir == NULL ) {
- return E_NO_MEMORY;
- }
-
- // read all the program headers
- int stat = read_phdrs( hdr, pcb );
- if( stat != SUCCESS ) {
- // TODO figure out a better way to deal with this
- PANIC( 0, "user_load: phdr read failed" );
- }
-
- // next, set up the runtime stack - just like setting up loadable
- // sections, except nothing to copy
- stat = vm_add( pcb->pdir, true, false, (void *) USER_STACK,
- SZ_USTACK, NULL, 0 );
- if( stat != SUCCESS ) {
- // TODO yadda yadda...
- PANIC( 0, "user_load: vm_add failed" );
- }
-
- // set up the command-line arguments
- pcb->context = stack_setup( pcb, hdr->e_entry, args );
-
- return SUCCESS;
-}
-
-/**
-** Name: user_cleanup
-**
-** "Unloads" a user program. Deallocates all memory frames and
-** cleans up the VM structures.
-**
-** @param pcb The PCB of the program to be unloaded
-*/
-void user_cleanup( pcb_t *pcb ) {
-
- if( pcb == NULL ) {
- // should this be an error?
- return;
- }
-
- vm_free( pcb->pdir );
- pcb->pdir = NULL;
-}