summaryrefslogtreecommitdiff
path: root/kernel/old/user.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/old/user.c')
-rw-r--r--kernel/old/user.c808
1 files changed, 331 insertions, 477 deletions
diff --git a/kernel/old/user.c b/kernel/old/user.c
index 5759534..c41867e 100644
--- a/kernel/old/user.c
+++ b/kernel/old/user.c
@@ -6,7 +6,7 @@
** @brief User-level code manipulation routines
*/
-#define KERNEL_SRC
+#define KERNEL_SRC
#include <common.h>
@@ -35,16 +35,16 @@
** Location of the "user blob" in memory.
**
** These variables are filled in by the code in startup.S using values
-** passed to it from the bootstrap.
+** passed to it from the bootstrap.
**
** These are visible so that the startup code can find them.
*/
-uint16_t user_offset; // byte offset from the segment base
-uint16_t user_segment; // segment base address
-uint16_t user_sectors; // number of 512-byte sectors it occupies
+uint16_t user_offset; // byte offset from the segment base
+uint16_t user_segment; // segment base address
+uint16_t user_sectors; // number of 512-byte sectors it occupies
-header_t *user_header; // filled in by the user_init routine
-prog_t *prog_table; // filled in by the user_init routine
+header_t *user_header; // filled in by the user_init routine
+prog_t *prog_table; // filled in by the user_init routine
/*
** PRIVATE FUNCTIONS
@@ -65,117 +65,78 @@ static char ebuf[16];
*/
// interpret the file class
-static const char *fh_eclass(e32_si class)
-{
- switch (class) {
- case ELF_CLASS_NONE:
- return ("None");
- break;
- case ELF_CLASS_32:
- return ("EC32");
- break;
- case ELF_CLASS_64:
- return ("EC64");
- break;
+static const char *fh_eclass( e32_si class ) {
+ switch( class ) {
+ case ELF_CLASS_NONE: return( "None" ); break;
+ case ELF_CLASS_32: return( "EC32" ); break;
+ case ELF_CLASS_64: return( "EC64" ); break;
}
- return ("????");
+ return( "????" );
}
// interpret the data encoding
-static const char *fh_edata(e32_si data)
-{
- switch (data) {
- case ELF_DATA_NONE:
- return ("Invd");
- break;
- case ELF_DATA_2LSB:
- return ("2CLE");
- break;
- case ELF_DATA_2MSB:
- return ("2CBE");
- break;
+static const char *fh_edata( e32_si data ) {
+ switch( data ) {
+ case ELF_DATA_NONE: return( "Invd" ); break;
+ case ELF_DATA_2LSB: return( "2CLE" ); break;
+ case ELF_DATA_2MSB: return( "2CBE" ); break;
}
- return ("????");
+ return( "????" );
}
// interpret the file type
-static const char *fh_htype(e32_h type)
-{
- switch (type) {
- case ET_NONE:
- return ("none");
- break;
- case ET_REL:
- return ("rel");
- break;
- case ET_EXEC:
- return ("exec");
- break;
- case ET_DYN:
- return ("dyn");
- break;
- case ET_CORE:
- return ("core");
- break;
+static const char *fh_htype( e32_h type ) {
+ switch( type ) {
+ case ET_NONE: return( "none" ); break;
+ case ET_REL: return( "rel" ); break;
+ case ET_EXEC: return( "exec" ); break;
+ case ET_DYN: return( "dyn" ); break;
+ case ET_CORE: return( "core" ); break;
default:
- if (type >= ET_LO_OS && type <= ET_HI_OS)
- return ("OSsp");
- else if (type >= ET_LO_CP && type <= ET_HI_CP)
- return ("CPsp");
+ if( type >= ET_LO_OS && type <= ET_HI_OS )
+ return( "OSsp" );
+ else if( type >= ET_LO_CP && type <= ET_HI_CP )
+ return( "CPsp" );
}
- sprint(ebuf, "0x%04x", type);
- return ((const char *)ebuf);
+ sprint( ebuf, "0x%04x", type );
+ return( (const char *) ebuf );
}
// interpret the machine type
-static const char *fh_mtype(e32_h machine)
-{
- switch (machine) {
- case EM_NONE:
- return ("None");
- break;
- case EM_386:
- return ("386");
- break;
- case EM_ARM:
- return ("ARM");
- break;
- case EM_X86_64:
- return ("AMD64");
- break;
- case EM_AARCH64:
- return ("AARCH64");
- break;
- case EM_RISCV:
- return ("RISC-V");
- break;
+static const char *fh_mtype( e32_h machine ) {
+ switch( machine ) {
+ case EM_NONE: return( "None" ); break;
+ case EM_386: return( "386" ); break;
+ case EM_ARM: return( "ARM" ); break;
+ case EM_X86_64: return( "AMD64" ); break;
+ case EM_AARCH64: return( "AARCH64" ); break;
+ case EM_RISCV: return( "RISC-V" ); break;
}
- return ("Other");
+ return( "Other" );
}
// dump the program header
-static void dump_fhdr(elfhdr_t *hdr)
-{
- cio_puts("File header: magic ");
- for (int i = EI_MAG0; i <= EI_MAG3; ++i)
- put_char_or_code(hdr->e_ident.bytes[i]);
- cio_printf(" class %s", fh_eclass(hdr->e_ident.f.class));
- cio_printf(" enc %s", fh_edata(hdr->e_ident.f.data));
- cio_printf(" ver %u\n", hdr->e_ident.f.version);
- cio_printf(" type %s", fh_htype(hdr->e_type));
- cio_printf(" mach %s", fh_mtype(hdr->e_machine));
- cio_printf(" vers %d", hdr->e_version);
- cio_printf(" entr %08x\n", hdr->e_entry);
+static void dump_fhdr( elfhdr_t *hdr ) {
+ cio_puts( "File header: magic " );
+ for( int i = EI_MAG0; i <= EI_MAG3; ++i )
+ put_char_or_code( hdr->e_ident.bytes[i] );
+ cio_printf( " class %s", fh_eclass(hdr->e_ident.f.class) );
+ cio_printf( " enc %s", fh_edata(hdr->e_ident.f.data) );
+ cio_printf( " ver %u\n", hdr->e_ident.f.version );
+ cio_printf( " type %s", fh_htype(hdr->e_type) );
+ cio_printf( " mach %s", fh_mtype(hdr->e_machine) );
+ cio_printf( " vers %d", hdr->e_version );
+ cio_printf( " entr %08x\n", hdr->e_entry );
- cio_printf(" phoff %08x", hdr->e_phoff);
- cio_printf(" shoff %08x", hdr->e_shoff);
- cio_printf(" flags %08x", (uint32_t)hdr->e_flags);
- cio_printf(" ehsize %u\n", hdr->e_ehsize);
- cio_printf(" phentsize %u", hdr->e_phentsize);
- cio_printf(" phnum %u", hdr->e_phnum);
- cio_printf(" shentsize %u", hdr->e_shentsize);
- cio_printf(" shnum %u", hdr->e_shnum);
- cio_printf(" shstrndx %u\n", hdr->e_shstrndx);
+ cio_printf( " phoff %08x", hdr->e_phoff );
+ cio_printf( " shoff %08x", hdr->e_shoff );
+ cio_printf( " flags %08x", (uint32_t) hdr->e_flags );
+ cio_printf( " ehsize %u\n", hdr->e_ehsize );
+ cio_printf( " phentsize %u", hdr->e_phentsize );
+ cio_printf( " phnum %u", hdr->e_phnum );
+ cio_printf( " shentsize %u", hdr->e_shentsize );
+ cio_printf( " shnum %u", hdr->e_shnum );
+ cio_printf( " shstrndx %u\n", hdr->e_shstrndx );
}
/*
@@ -183,67 +144,45 @@ static void dump_fhdr(elfhdr_t *hdr)
*/
// categorize the header type
-static const char *ph_type(e32_w type)
-{
- switch (type) {
- case PT_NULL:
- return ("Unused");
- break;
- case PT_LOAD:
- return ("Load");
- break;
- case PT_DYNAMIC:
- return ("DLI");
- break;
- case PT_INTERP:
- return ("Interp");
- break;
- case PT_NOTE:
- return ("Aux");
- break;
- case PT_SHLIB:
- return ("RSVD");
- break;
- case PT_PHDR:
- return ("PTentry");
- break;
- case PT_TLS:
- return ("TLS");
- break;
+static const char *ph_type( e32_w type ) {
+ switch( type ) {
+ case PT_NULL: return( "Unused" ); break;
+ case PT_LOAD: return( "Load" ); break;
+ case PT_DYNAMIC: return( "DLI" ); break;
+ case PT_INTERP: return( "Interp" ); break;
+ case PT_NOTE: return( "Aux" ); break;
+ case PT_SHLIB: return( "RSVD" ); break;
+ case PT_PHDR: return( "PTentry" ); break;
+ case PT_TLS: return( "TLS" ); break;
default:
- if (type >= PT_LO_OS && type <= PT_HI_OS)
- return ("OSsp");
- else if (type >= PT_LO_CP && type <= PT_HI_CP)
- return ("CPsp");
+ if( type >= PT_LO_OS && type <= PT_HI_OS )
+ return( "OSsp" );
+ else if( type >= PT_LO_CP && type <= PT_HI_CP )
+ return( "CPsp" );
}
- sprint(ebuf, "0x%08x", type);
- return ((const char *)ebuf);
+ sprint( ebuf, "0x%08x", type );
+ return( (const char *) ebuf );
}
// report the individual flags
-static void ph_flags(e32_w flags)
-{
- if ((flags & PF_R) != 0)
- cio_putchar('R');
- if ((flags & PF_W) != 0)
- cio_putchar('W');
- if ((flags & PF_E) != 0)
- cio_putchar('X');
+static void ph_flags( e32_w flags ) {
+ if( (flags & PF_R) != 0 ) cio_putchar( 'R' );
+ if( (flags & PF_W) != 0 ) cio_putchar( 'W' );
+ if( (flags & PF_E) != 0 ) cio_putchar( 'X' );
}
// dump a program header
-static void dump_phdr(elfproghdr_t *hdr, int n)
-{
- cio_printf("Prog header %d, type %s\n", n, ph_type(hdr->p_type));
- cio_printf(" offset %08x", hdr->p_offset);
- cio_printf(" va %08x", hdr->p_va);
- cio_printf(" pa %08x\n", hdr->p_pa);
- cio_printf(" filesz %08x", hdr->p_filesz);
- cio_printf(" memsz %08x", hdr->p_memsz);
- cio_puts(" flags ");
- ph_flags(hdr->p_flags);
- cio_printf(" align %08x", hdr->p_align);
- cio_putchar('\n');
+static void dump_phdr( elfproghdr_t *hdr, int n ) {
+ cio_printf( "Prog header %d, type %s\n", n, ph_type(hdr->p_type) );
+ cio_printf( " offset %08x", hdr->p_offset );
+ cio_printf( " va %08x", hdr->p_va );
+ cio_printf( " pa %08x\n", hdr->p_pa );
+ cio_printf( " filesz %08x", hdr->p_filesz );
+ cio_printf( " memsz %08x", hdr->p_memsz );
+ cio_puts( " flags " );
+ ph_flags( hdr->p_flags );
+ cio_printf( " align %08x", hdr->p_align );
+ cio_putchar( '\n' );
}
/*
@@ -251,95 +190,58 @@ static void dump_phdr(elfproghdr_t *hdr, int n)
*/
// interpret the header type
-static const char *sh_type(e32_w type)
-{
- switch (type) {
- case SHT_NULL:
- return ("Unused");
- break;
- case SHT_PROGBITS:
- return ("Progbits");
- break;
- case SHT_SYMTAB:
- return ("Symtab");
- break;
- case SHT_STRTAB:
- return ("Strtab");
- break;
- case SHT_RELA:
- return ("Rela");
- break;
- case SHT_HASH:
- return ("Hash");
- break;
- case SHT_DYNAMIC:
- return ("Dynamic");
- break;
- case SHT_NOTE:
- return ("Note");
- break;
- case SHT_NOBITS:
- return ("Nobits");
- break;
- case SHT_REL:
- return ("Rel");
- break;
- case SHT_SHLIB:
- return ("Shlib");
- break;
- case SHT_DYNSYM:
- return ("Dynsym");
- break;
+static const char *sh_type( e32_w type ) {
+ switch( type ) {
+ case SHT_NULL: return( "Unused" ); break;
+ case SHT_PROGBITS: return( "Progbits" ); break;
+ case SHT_SYMTAB: return( "Symtab" ); break;
+ case SHT_STRTAB: return( "Strtab" ); break;
+ case SHT_RELA: return( "Rela" ); break;
+ case SHT_HASH: return( "Hash" ); break;
+ case SHT_DYNAMIC: return( "Dynamic" ); break;
+ case SHT_NOTE: return( "Note" ); break;
+ case SHT_NOBITS: return( "Nobits" ); break;
+ case SHT_REL: return( "Rel" ); break;
+ case SHT_SHLIB: return( "Shlib" ); break;
+ case SHT_DYNSYM: return( "Dynsym" ); break;
default:
- if (type >= SHT_LO_CP && type <= SHT_HI_CP)
- return ("CCsp");
- else if (type >= SHT_LO_US && type <= SHT_HI_US)
- return ("User");
+ if( type >= SHT_LO_CP && type <= SHT_HI_CP )
+ return( "CCsp" );
+ else if( type >= SHT_LO_US && type <= SHT_HI_US )
+ return( "User" );
}
- sprint(ebuf, "0x%08x", type);
- return ((const char *)ebuf);
+ sprint( ebuf, "0x%08x", type );
+ return( (const char *) ebuf );
}
// report the various flags
-static void sh_flags(unsigned int flags)
-{
- if ((flags & SHF_WRITE) != 0)
- cio_putchar('W');
- if ((flags & SHF_ALLOC) != 0)
- cio_putchar('A');
- if ((flags & SHF_EXECINSTR) != 0)
- cio_putchar('X');
- if ((flags & SHF_MERGE) != 0)
- cio_putchar('M');
- if ((flags & SHF_STRINGS) != 0)
- cio_putchar('S');
- if ((flags & SHF_INFO_LINK) != 0)
- cio_putchar('L');
- if ((flags & SHF_LINK_ORDER) != 0)
- cio_putchar('o');
- if ((flags & SHF_OS_NONCON) != 0)
- cio_putchar('n');
- if ((flags & SHF_GROUP) != 0)
- cio_putchar('g');
- if ((flags & SHF_TLS) != 0)
- cio_putchar('t');
+static void sh_flags( unsigned int flags ) {
+ if( (flags & SHF_WRITE) != 0 ) cio_putchar( 'W' );
+ if( (flags & SHF_ALLOC) != 0 ) cio_putchar( 'A' );
+ if( (flags & SHF_EXECINSTR) != 0 ) cio_putchar( 'X' );
+ if( (flags & SHF_MERGE) != 0 ) cio_putchar( 'M' );
+ if( (flags & SHF_STRINGS) != 0 ) cio_putchar( 'S' );
+ if( (flags & SHF_INFO_LINK) != 0 ) cio_putchar( 'L' );
+ if( (flags & SHF_LINK_ORDER) != 0 ) cio_putchar( 'o' );
+ if( (flags & SHF_OS_NONCON) != 0 ) cio_putchar( 'n' );
+ if( (flags & SHF_GROUP) != 0 ) cio_putchar( 'g' );
+ if( (flags & SHF_TLS) != 0 ) cio_putchar( 't' );
}
// dump a section header
ATTR_UNUSED
-static void dump_shdr(elfsecthdr_t *hdr, int n)
-{
- cio_printf("Sect header %d, type %d (%s), name %s\n", n, hdr->sh_type,
- sh_type(hdr->sh_type));
- cio_printf(" flags %08x ", (uint32_t)hdr->sh_flags);
- sh_flags(hdr->sh_flags);
- cio_printf(" addr %08x", hdr->sh_addr);
- cio_printf(" offset %08x", hdr->sh_offset);
- cio_printf(" size %08x\n", hdr->sh_size);
- cio_printf(" link %08x", hdr->sh_link);
- cio_printf(" info %08x", hdr->sh_info);
- cio_printf(" align %08x", hdr->sh_addralign);
- cio_printf(" entsz %08x\n", hdr->sh_entsize);
+static void dump_shdr( elfsecthdr_t *hdr, int n ) {
+ cio_printf( "Sect header %d, type %d (%s), name %s\n",
+ n, hdr->sh_type, sh_type(hdr->sh_type) );
+ cio_printf( " flags %08x ", (uint32_t) hdr->sh_flags );
+ sh_flags( hdr->sh_flags );
+ cio_printf( " addr %08x", hdr->sh_addr );
+ cio_printf( " offset %08x", hdr->sh_offset );
+ cio_printf( " size %08x\n", hdr->sh_size );
+ cio_printf( " link %08x", hdr->sh_link );
+ cio_printf( " info %08x", hdr->sh_info );
+ cio_printf( " align %08x", hdr->sh_addralign );
+ cio_printf( " entsz %08x\n", hdr->sh_entsize );
}
#endif
@@ -356,51 +258,51 @@ static void dump_shdr(elfsecthdr_t *hdr, int n)
** E_LOAD_LIMIT more than N_LOADABLE PT_LOAD sections
** other status returned from vm_add()
*/
-static int read_phdrs(elfhdr_t *hdr, pcb_t *pcb)
-{
+static int read_phdrs( elfhdr_t *hdr, pcb_t *pcb ) {
+
// sanity check
- assert1(hdr != NULL);
- assert2(pcb != NULL);
+ assert1( hdr != NULL );
+ assert2( pcb != NULL );
#if TRACING_USER
- cio_printf("read_phdrs(%08x,%08x)\n", (uint32_t)hdr, (uint32_t)pcb);
+ cio_printf( "read_phdrs(%08x,%08x)\n", (uint32_t) hdr, (uint32_t) pcb );
#endif
// iterate through the program headers
uint_t nhdrs = hdr->e_phnum;
// pointer to the first header table entry
- elfproghdr_t *curr = (elfproghdr_t *)((uint32_t)hdr + hdr->e_phoff);
+ elfproghdr_t *curr = (elfproghdr_t *) ((uint32_t) hdr + hdr->e_phoff);
// process them all
int loaded = 0;
- for (uint_t i = 0; i < nhdrs; ++i, ++curr) {
+ for( uint_t i = 0; i < nhdrs; ++i, ++curr ) {
+
#if TRACING_ELF
- dump_phdr(curr, i);
+ dump_phdr( curr, i );
#endif
- if (curr->p_type != PT_LOAD) {
+ if( curr->p_type != PT_LOAD ) {
// not loadable --> we'll skip it
continue;
}
- if (loaded >= N_LOADABLE) {
+ if( loaded >= N_LOADABLE ) {
#if TRACING_USER
- cio_puts(" LIMIT\n");
+ cio_puts( " LIMIT\n" );
#endif
return E_LOAD_LIMIT;
}
// set a pointer to the bytes within the object file
- char *data = (char *)(((uint32_t)hdr) + curr->p_offset);
+ char *data = (char *) (((uint32_t)hdr) + curr->p_offset);
#if TRACING_USER
- cio_printf(" data @ %08x", (uint32_t)data);
+ cio_printf( " data @ %08x", (uint32_t) data );
#endif
// copy the pages into memory
- int stat = vm_add(pcb->pdir, curr->p_flags & PF_W, false,
- (char *)curr->p_va, curr->p_memsz, data,
- curr->p_filesz);
- if (stat != SUCCESS) {
+ int stat = vm_add( pcb->pdir, curr->p_flags & PF_W, false,
+ (char *) curr->p_va, curr->p_memsz, data, curr->p_filesz );
+ if( stat != SUCCESS ) {
// TODO what else should we do here? check for memory leak?
return stat;
}
@@ -409,8 +311,8 @@ static int read_phdrs(elfhdr_t *hdr, pcb_t *pcb)
pcb->sects[loaded].length = curr->p_memsz;
pcb->sects[loaded].addr = curr->p_va;
#if TRACING_USER
- cio_printf(" loaded %u @ %08x\n", pcb->sects[loaded].length,
- pcb->sects[loaded].addr);
+ cio_printf( " loaded %u @ %08x\n",
+ pcb->sects[loaded].length, pcb->sects[loaded].addr );
#endif
++loaded;
}
@@ -426,27 +328,39 @@ static int read_phdrs(elfhdr_t *hdr, pcb_t *pcb)
** @param pcb Pointer to the PCB for the process
** @param entry Entry point for the new process
** @param args Argument vector to be put in place
-** @param sys Is the argument vector from kernel code?
**
-** @return A (user VA) pointer to the context_t on the stack, or NULL
+** @return A pointer to the context_t on the stack, or NULL
*/
-static context_t *stack_setup(pcb_t *pcb, uint32_t entry, const char **args,
- bool_t sys)
-{
-#if TRACING_USER
- cio_printf("stksetup: pcb %08x, entry %08x, args %08x\n", (uint32_t)pcb,
- entry, (uint32_t)args);
-#endif
+static context_t *stack_setup( pcb_t *pcb, uint32_t entry, const char **args ) {
/*
- ** First, we need to calculate the space we'll need for the argument
+ ** First, we need to count the space we'll need for the argument
** vector and strings.
+ */
+
+ int argbytes = 0;
+ int argc = 0;
+
+ while( args[argc] != NULL ) {
+ int n = strlen( args[argc] ) + 1;
+ // can't go over one page in size
+ if( (argbytes + n) > SZ_PAGE ) {
+ // oops - ignore this and any others
+ break;
+ }
+ argbytes += n;
+ ++argc;
+ }
+
+ // Round up the byte count to the next multiple of four.
+ argbytes = (argbytes + 3) & MOD4_MASK;
+
+ /*
+ ** Allocate the arrays. We are safe using dynamic arrays here
+ ** because we're using the OS stack, not the user stack.
**
- ** Keeping track of kernel vs. user VAs is tricky, so we'll use
- ** a prefix on variable names: kv_* is a kernel virtual address;
- ** uv_* is a user virtual address.
- **
- ** We rely on the C standard, section 6.7.8, to clear these arrays:
+ ** We want the argstrings and argv arrays to contain all zeroes.
+ ** The C standard states, in section 6.7.8, that
**
** "21 If there are fewer initializers in a brace-enclosed list
** than there are elements or members of an aggregate, or
@@ -455,36 +369,31 @@ static context_t *stack_setup(pcb_t *pcb, uint32_t entry, const char **args,
** the remainder of the aggregate shall be initialized
** implicitly the same as objects that have static storage
** duration."
+ **
+ ** Sadly, because we're using variable-sized arrays, we can't
+ ** rely on this, so we have to call memclr() instead. :-( In
+ ** truth, it doesn't really cost us much more time, but it's an
+ ** annoyance.
*/
- int argbytes = 0; // total length of arg strings
- int argc = 0; // number of argv entries
- const char *kv_strs[N_ARGS] = { 0 }; // converted user arg string pointers
- int strlengths[N_ARGS] = { 0 }; // length of each string
- const char *uv_argv[N_ARGS] = { 0 }; // argv pointers
+ char argstrings[ argbytes ];
+ char *argv[ argc + 1 ];
- /*
- ** IF the argument list given to us came from user code, we need
- ** to convert its address and the addresses it contains to kernel
- ** VAs; otherwise, we can use them directly.
- */
- char **kv_args = sys ? args : vm_uva2kva(pcb->pdir, (void *)args);
+ CLEAR( argstrings );
+ CLEAR( argv );
- while (kv_args[argc] != NULL) {
- kv_strs[argc] = sys ? args[argc] :
- vm_uva2kva(pcb->pdir, (void *)(kv_args[argc]));
- strlengths[argc] = strlen(kv_strs[argc]) + 1;
- // can't go over one page in size
- if ((argbytes + strlengths[argc]) > SZ_PAGE) {
- // oops - ignore this and any others
- break;
- }
- argbytes += strlengths[argc];
- ++argc;
+ // Next, duplicate the argument strings, and create pointers to
+ // each one in our argv.
+ char *tmp = argstrings;
+ for( int i = 0; i < argc; ++i ) {
+ int nb = strlen(args[i]) + 1; // bytes (incl. NUL) in this string
+ strcpy( tmp, args[i] ); // add to our buffer
+ argv[i] = tmp; // remember where it was
+ tmp += nb; // move on
}
- // Round up the byte count to the next multiple of four.
- argbytes = (argbytes + 3) & MOD4_MASK;
+ // trailing NULL pointer
+ argv[argc] = NULL;
/*
** The pages for the stack were cleared when they were allocated,
@@ -496,7 +405,7 @@ static context_t *stack_setup(pcb_t *pcb, uint32_t entry, const char **args,
** The user code was linked with a startup function that defines
** the entry point (_start), calls main(), and then calls exit()
** if main() returns. We need to set up the stack this way:
- **
+ **
** esp -> context <- context save area
** ... <- context save area
** context <- context save area
@@ -510,73 +419,35 @@ static context_t *stack_setup(pcb_t *pcb, uint32_t entry, const char **args,
** Stack alignment rules for the SysV ABI i386 supplement dictate that
** the 'argc' parameter must be at an address that is a multiple of 16;
** see below for more information.
- **
- ** Ultimately, this is what the bottom end of the stack will look like:
- **
- ** kvavptr
- ** kvacptr |
- ** | |
- ** v v
- ** argc argv av[0] av[1] etc NULL str0 str1 etc.
- ** [....][....][....][....] ... [0000] ... [......0......0.........]
- ** | ^ | | ^ ^
- ** | | | | | |
- ** ------ | ---------------------|-------
- ** ---------------------------
- */
-
- /*
- ** We need to find the last page of the user stack. Find the page
- ** table for the 4MB user address space. The physical address of its
- ** frame is in the first page directory entry. Extract that from the
- ** entry and convert it into a virtual address for the kernel to use.
- */
- pde_t *kv_userpt = (pde_t *)P2V(PTE_ADDR(pcb->pdir[USER_PDE]));
- assert(kv_userpt != NULL);
-
- /*
- ** The final entries in that PMT are for the pages of the user stack.
- ** Grab the physical address of the frame for the last one. (Again,
- ** we need to convert it to a virtual address we can use.)
*/
- // the PMT entry for that page
- pte_t pmt_entry = kv_userpt[USER_STK_LAST_PTE];
- assert(IS_PRESENT(pmt_entry));
-
- // user VA for the first byte of that page
- uint32_t *uvptr = (uint32_t *)USER_STACK_P2;
+ // Pointer to the last word in stack. We get this from the
+ // VM hierarchy. Get the PDE entry for the user address space.
+ pde_t stack_pde = pcb->pdir[USER_PDE];
- // convert that address to a kernel VA
- uint32_t *kvptr = (uint32_t *)vm_uva2kva(pcb->pdir, (void *)uvptr);
+ // The PDE entry points to the PT, which is an array of PTE. The last
+ // two entries are for the stack; pull out the last one.
+ pte_t stack_pte = ((pte_t *)(stack_pde & MOD4K_MASK))[USER_STK_PTE2];
- /*
- ** Move these pointers to where the string area will begin. We
- ** will then back up to the next lower multiple-of-four address.
- */
+ // OK, now we have the PTE. The frame address of the last page is
+ // in this PTE. Find the address immediately after that.
+ uint32_t *ptr = (uint32_t *)
+ ((uint32_t)(stack_pte & MOD4K_MASK) + SZ_PAGE);
- uint32_t uvstrptr = ((uint32_t)uvptr) + SZ_PAGE - argbytes;
- uvstrptr &= MOD4_MASK;
+ // Pointer to where the arg strings should be filled in.
+ char *strings = (char *) ( (uint32_t) ptr - argbytes );
- uint32_t kvstrptr = ((uint32_t)kvptr) + SZ_PAGE - argbytes;
- kvstrptr &= MOD4_MASK;
+ // back the pointer up to the nearest word boundary; because we're
+ // moving toward location 0, the nearest word boundary is just the
+ // next smaller address whose low-order two bits are zeroes
+ strings = (char *) ((uint32_t) strings & MOD4_MASK);
- // Copy over the argv strings, remembering where each string begins
- for (int i = 0; i < argc; ++i) {
- // copy the string using kernel addresses
- strcpy((char *)kvstrptr, kv_args[i]);
-
- // remember the user address where this string went
- uv_argv[i] = (char *)uvstrptr;
-
- // adjust both string addresses
- kvstrptr += strlengths[i];
- uvstrptr += strlengths[i];
- }
+ // Copy over the argv strings.
+ memcpy( (void *)strings, argstrings, argbytes );
/*
- ** Next, we need to copy over the other data. Start by determining
- ** where 'argc' should go.
+ ** Next, we need to copy over the argv pointers. Start by
+ ** determining where 'argc' should go.
**
** Stack alignment is controlled by the SysV ABI i386 supplement,
** version 1.2 (June 23, 2016), which states in section 2.2.2:
@@ -590,43 +461,53 @@ static context_t *stack_setup(pcb_t *pcb, uint32_t entry, const char **args,
**
** Isn't technical documentation fun? Ultimately, this means that
** the first parameter to main() should be on the stack at an address
- ** that is a multiple of 16. In our case, that is 'argc'.
- */
-
- /*
+ ** that is a multiple of 16.
+ **
** The space needed for argc, argv, and the argv array itself is
** argc + 3 words (argc+1 for the argv entries, plus one word each
- ** for argc and argv). We back up that much from the string area.
+ ** for argc and argv). We back up that much from 'strings'.
*/
int nwords = argc + 3;
- uint32_t *kvacptr = ((uint32_t *)kvstrptr) - nwords;
- uint32_t *uvacptr = ((uint32_t *)uvstrptr) - nwords;
+ uint32_t *acptr = ((uint32_t *) strings) - nwords;
+
+ /*
+ ** Next, back up until we're at a multiple-of-16 address. Because we
+ ** are moving to a lower address, its upper 28 bits are identical to
+ ** the address we currently have, so we can do this with a bitwise
+ ** AND to just turn off the lower four bits.
+ */
- // back these up to multiple-of-16 addresses for stack alignment
- kvacptr = (uint32_t *)(((uint32_t)kvacptr) & MOD16_MASK);
- uvacptr = (uint32_t *)(((uint32_t)uvacptr) & MOD16_MASK);
+ acptr = (uint32_t *) ( ((uint32_t)acptr) & MOD16_MASK );
// copy in 'argc'
- *kvacptr = argc;
+ *acptr = argc;
- // 'argv' immediately follows 'argc', and 'argv[0]' immediately
- // follows 'argv'
- uint32_t *kvavptr = kvacptr + 2;
- *(kvavptr - 1) = (uint32_t)kvavptr;
+ // next, 'argv', which follows 'argc'; 'argv' points to the
+ // word that follows it in the stack
+ uint32_t *avptr = acptr + 2;
+ *(acptr+1) = (uint32_t) avptr;
- // now, the argv entries themselves
- for (int i = 0; i < argc; ++i) {
- *kvavptr++ = (uint32_t)uv_argv[i];
- }
+ /*
+ ** Next, we copy in all argc+1 pointers.
+ */
- // and the trailing NULL
- *kvavptr = NULL;
+ // Adjust and copy the string pointers.
+ for( int i = 0; i <= argc; ++i ) {
+ if( argv[i] != NULL ) {
+ // an actual pointer - adjust it and copy it in
+ *avptr = (uint32_t) strings;
+ // skip to the next entry in the array
+ strings += strlen(argv[i]) + 1;
+ } else {
+ // end of the line!
+ *avptr = NULL;
+ }
+ ++avptr;
+ }
/*
- ** Almost done!
- **
- ** Now we need to set up the initial context for the executing
+ ** Now, we need to set up the initial context for the executing
** process.
**
** When this process is dispatched, the context restore code will
@@ -635,34 +516,27 @@ static context_t *stack_setup(pcb_t *pcb, uint32_t entry, const char **args,
** the interrupt "returns" to the entry point of the process.
*/
- // Locate the context save area on the stack by backup up one
- // "context" from where the argc value is saved
- context_t *kvctx = ((context_t *)kvacptr) - 1;
- uint32_t uvctx = (uint32_t)(((context_t *)uvacptr) - 1);
+ // Locate the context save area on the stack.
+ context_t *ctx = ((context_t *) avptr) - 1;
/*
** We cleared the entire stack earlier, so all the context
** fields currently contain zeroes. We now need to fill in
** all the important fields.
- **
- ** Note: we don't need to set the ESP value for the process,
- ** as the 'popa' that restores the general registers doesn't
- ** actually restore ESP from the context area - it leaves it
- ** where it winds up.
*/
- kvctx->eflags = DEFAULT_EFLAGS; // IF enabled, IOPL 0
- kvctx->eip = entry; // initial EIP
- kvctx->cs = GDT_CODE; // segment registers
- kvctx->ss = GDT_STACK;
- kvctx->ds = kvctx->es = kvctx->fs = kvctx->gs = GDT_DATA;
+ ctx->eflags = DEFAULT_EFLAGS; // IE enabled, PPL 0
+ ctx->eip = entry; // initial EIP
+ ctx->cs = GDT_CODE; // segment registers
+ ctx->ss = GDT_STACK;
+ ctx->ds = ctx->es = ctx->fs = ctx->gs = GDT_DATA;
/*
- ** Return the new context pointer to the caller as a user
- ** space virtual address.
+ ** Return the new context pointer to the caller. It will be our
+ ** caller's responsibility to schedule this process.
*/
-
- return ((context_t *)uvctx);
+
+ return( ctx );
}
/*
@@ -674,36 +548,39 @@ static context_t *stack_setup(pcb_t *pcb, uint32_t entry, const char **args,
**
** Initializes the user support module.
*/
-void user_init(void)
-{
+void user_init( void ) {
+
#if TRACING_INIT
- cio_puts(" User");
-#endif
+ cio_puts( " User" );
+#endif
// This is gross, but we need to get this information somehow.
// Access the "user blob" data in the second bootstrap sector
- uint16_t *blobdata = (uint16_t *)P2V(USER_BLOB_DATA);
- user_offset = *blobdata++;
+ uint16_t *blobdata = (uint16_t *) USER_BLOB_DATA;
+ user_offset = *blobdata++;
user_segment = *blobdata++;
user_sectors = *blobdata++;
#if TRACING_USER
- cio_printf("\nUser blob: %u sectors @ %04x:%04x", user_sectors,
- user_segment, user_offset);
+ cio_printf( "\nUser blob: %u sectors @ %04x:%04x", user_sectors,
+ user_segment, user_offset );
#endif
// calculate the location of the user blob
- if (user_sectors > 0) {
+ if( user_sectors > 0 ) {
+
// calculate the address of the header
- user_header = (header_t *)(KERN_BASE + ((((uint_t)user_segment) << 4) +
- ((uint_t)user_offset)));
+ user_header = (header_t *)
+ ( KERN_BASE +
+ ( (((uint_t)user_segment) << 4) + ((uint_t)user_offset) )
+ );
// the program table immediate follows the blob header
- prog_table = (prog_t *)(user_header + 1);
+ prog_table = (prog_t *) (user_header + 1);
#if TRACING_USER
- cio_printf(", hdr %08x, %u progs, tbl %08x\n", (uint32_t)user_header,
- user_header->num, (uint32_t)prog_table);
+ cio_printf( ", hdr %08x, %u progs, tbl %08x\n", (uint32_t) user_header,
+ user_header->num, (uint32_t) prog_table );
#endif
} else {
@@ -711,7 +588,7 @@ void user_init(void)
user_header = NULL;
prog_table = NULL;
#if TRACING_USER
- cio_putchar('\n');
+ cio_putchar( '\n' );
#endif
}
}
@@ -725,19 +602,15 @@ void user_init(void)
**
** @return pointer to the program table entry in the code archive, or NULL
*/
-prog_t *user_locate(uint_t what)
-{
-#if TRACING_USER
- cio_printf("ulocate: %u\n", what);
-#endif
-
+prog_t *user_locate( uint_t what ) {
+
// no programs if there is no blob!
- if (user_header == NULL) {
+ if( user_header == NULL ) {
return NULL;
}
// make sure this is a reasonable program to request
- if (what >= user_header->num) {
+ if( what >= user_header->num ) {
// no such program!
return NULL;
}
@@ -746,7 +619,7 @@ prog_t *user_locate(uint_t what)
prog_t *prog = &prog_table[what];
// if there are no bytes, it's useless
- if (prog->size < 1) {
+ if( prog->size < 1 ) {
return NULL;
}
@@ -764,11 +637,7 @@ prog_t *user_locate(uint_t what)
**
** @return the status of the duplicate attempt
*/
-int user_duplicate(pcb_t *new, pcb_t *old)
-{
-#if TRACING_USER
- cio_printf("udup: old %08x new %08x\n", (uint32_t)old, (uint32_t)new);
-#endif
+int user_duplicate( pcb_t *new, pcb_t *old ) {
// We need to do a recursive duplication of the process address
// space of the current process. First, we create a new user
@@ -778,14 +647,14 @@ int user_duplicate(pcb_t *new, pcb_t *old)
// create the initial VM hierarchy
pde_t *pdir = vm_mkuvm();
- if (pdir == NULL) {
+ if( pdir == NULL ) {
return E_NO_MEMORY;
}
new->pdir = pdir;
// Next, add a USER_PDE page table that's a duplicate of the
// current process' page table
- if (!vm_uvmdup(new->pdir, old->pdir)) {
+ if( !vm_uvmdup(old->pdir,new->pdir) ) {
// check for memory leak?
return E_NO_MEMORY;
}
@@ -800,23 +669,26 @@ int user_duplicate(pcb_t *new, pcb_t *old)
// modified to loop over the larger space.
// pointer to the PMT for the user
- pte_t *pt = (pte_t *)(pdir[USER_PDE]);
- assert(pt != NULL);
+ pte_t *pt = (pte_t *) (pdir[USER_PDE]);
+ assert( pt != NULL );
- for (int i = 0; i < N_PTE; ++i) {
+ for( int i = 0; i < N_PTE; ++i ) {
// get the current entry from the PMT
pte_t entry = *pt;
// if this entry is present,
- if (IS_PRESENT(entry)) {
+ if( IS_PRESENT(entry) ) {
+
// duplicate the frame pointed to by this PTE
- void *tmp = vm_pagedup((void *)PTE_ADDR(entry));
+ void *tmp = vm_pagedup( (void *) PTE_ADDR(entry) );
// replace the old frame number with the new one
- *pt = (pte_t)(((uint32_t)tmp) | PERMS(entry));
+ *pt = (pte_t) (((uint32_t)tmp) | PERMS(entry) );
} else {
+
*pt = 0;
+
}
++pt;
}
@@ -833,74 +705,60 @@ int user_duplicate(pcb_t *new, pcb_t *old)
** @param ptab A pointer to the program table entry to be loaded
** @param pcb The PCB for the program being loaded
** @param args The argument vector for the program
-** @param sys Is the argument vector from kernel code?
**
** @return the status of the load attempt
*/
-int user_load(prog_t *ptab, pcb_t *pcb, const char **args, bool_t sys)
-{
- // NULL pointers are bad!
- assert1(ptab != NULL);
- assert1(pcb != NULL);
- assert1(args != NULL);
+int user_load( prog_t *ptab, pcb_t *pcb, const char **args ) {
-#if TRACING_USER
- cio_printf("Uload: prog '%s' pcb %08x args %08x\n",
- ptab->name[0] ? ptab->name : "?", (uint32_t)pcb, (uint32_t)args);
-#endif
+ // NULL pointers are bad!
+ assert1( ptab != NULL );
+ assert1( pcb != NULL );
+ assert1( args != NULL );
// locate the ELF binary
- elfhdr_t *hdr = (elfhdr_t *)((uint32_t)user_header + ptab->offset);
+ elfhdr_t *hdr = (elfhdr_t *) ((uint32_t)user_header + ptab->offset);
#if TRACING_ELF
- cio_printf("Load: ptab %08x: '%s', off %08x, size %08x, flags %08x\n",
- (uint32_t)ptab, ptab->name, ptab->offset, ptab->size,
- ptab->flags);
- cio_printf(" args %08x:", (uint32_t)args);
- if (sys) {
- for (int i = 0; args[i] != NULL; ++i) {
- cio_printf(" [%d] %s", i, args[i]);
- }
- } else {
- char **kv_args = vm_uva2kva(pcb->pdir, args);
- for (int i = 0; kv_args[i] != NULL; ++i) {
- cio_printf(" [%d] %s", i,
- (char *)vm_uva2kva(pcb->pdir, kv_args[i]));
- }
+ cio_printf( "Load: ptab %08x: '%s', off %08x, size %08x, flags %08x\n",
+ (uint32_t) ptab, ptab->name, ptab->offset, ptab->size,
+ ptab->flags );
+ cio_printf( " args %08x:", (uint32_t) args );
+ for( int i = 0; args[i] != NULL; ++i ) {
+ cio_printf( " [%d] %s", i, args[i] );
}
- cio_printf("\n pcb %08x (pid %u)\n", (uint32_t)pcb, pcb->pid);
- dump_fhdr(hdr);
+ cio_printf( "\n pcb %08x (pid %u)\n", (uint32_t) pcb, pcb->pid );
+ dump_fhdr( hdr );
#endif
// verify the ELF header
- if (hdr->e_ident.f.magic != ELF_MAGIC) {
+ if( hdr->e_ident.f.magic != ELF_MAGIC ) {
return E_BAD_PARAM;
}
// allocate a page directory
pcb->pdir = vm_mkuvm();
- if (pcb->pdir == NULL) {
+ if( pcb->pdir == NULL ) {
return E_NO_MEMORY;
}
// read all the program headers
- int stat = read_phdrs(hdr, pcb);
- if (stat != SUCCESS) {
- cio_printf("Uload: read_phdrs('%s') returned %d\n", ptab->name, stat);
- PANIC(0, "User_load: phdr read failed");
+ int stat = read_phdrs( hdr, pcb );
+ if( stat != SUCCESS ) {
+ // TODO figure out a better way to deal with this
+ PANIC( 0, "user_load: phdr read failed" );
}
// next, set up the runtime stack - just like setting up loadable
// sections, except nothing to copy
- stat =
- vm_add(pcb->pdir, true, false, (void *)USER_STACK, SZ_USTACK, NULL, 0);
- if (stat != SUCCESS) {
- cio_printf("Uload: vm_add('%s') stack returned %d\n", ptab->name, stat);
- PANIC(0, "user_load: vm_add stack failed");
+ stat = vm_add( pcb->pdir, true, false, (void *) USER_STACK,
+ SZ_USTACK, NULL, 0 );
+ if( stat != SUCCESS ) {
+ // TODO yadda yadda...
+ PANIC( 0, "user_load: vm_add failed" );
}
// set up the command-line arguments
- pcb->context = stack_setup(pcb, hdr->e_entry, args, sys);
+ pcb->context = stack_setup( pcb, hdr->e_entry, args );
return SUCCESS;
}
@@ -913,17 +771,13 @@ int user_load(prog_t *ptab, pcb_t *pcb, const char **args, bool_t sys)
**
** @param pcb The PCB of the program to be unloaded
*/
-void user_cleanup(pcb_t *pcb)
-{
-#if TRACING_USER
- cio_printf("Uclean: %08x\n", (uint32_t)pcb);
-#endif
-
- if (pcb == NULL) {
+void user_cleanup( pcb_t *pcb ) {
+
+ if( pcb == NULL ) {
// should this be an error?
return;
}
- vm_free(pcb->pdir);
+ vm_free( pcb->pdir );
pcb->pdir = NULL;
}