summaryrefslogtreecommitdiff
path: root/kernel/procs.c
diff options
context:
space:
mode:
authorFreya Murphy <freya@freyacat.org>2025-04-03 12:31:21 -0400
committerFreya Murphy <freya@freyacat.org>2025-04-03 12:31:21 -0400
commita524eb3846aac4d1b38f08cba49ff3503107042f (patch)
treedbe81fccf975f646a681e4fdcebd227cdfb98774 /kernel/procs.c
parentnew libs (diff)
downloadcomus-a524eb3846aac4d1b38f08cba49ff3503107042f.tar.gz
comus-a524eb3846aac4d1b38f08cba49ff3503107042f.tar.bz2
comus-a524eb3846aac4d1b38f08cba49ff3503107042f.zip
move old kernel code (for now) into kernel/old, trying to get long mode
Diffstat (limited to 'kernel/procs.c')
-rw-r--r--kernel/procs.c1116
1 files changed, 0 insertions, 1116 deletions
diff --git a/kernel/procs.c b/kernel/procs.c
deleted file mode 100644
index 82c4c98..0000000
--- a/kernel/procs.c
+++ /dev/null
@@ -1,1116 +0,0 @@
-/*
-** @file procs.c
-**
-** @author CSCI-452 class of 20245
-**
-** @brief Process-related implementations
-*/
-
-#define KERNEL_SRC
-
-#include <common.h>
-
-#include <procs.h>
-#include <user.h>
-
-/*
-** PRIVATE DEFINITIONS
-*/
-
-// determine if a queue is empty; assumes 'q' is a valid pointer
-#define PCB_QUEUE_EMPTY(q) ((q)->head == NULL)
-
-/*
-** PRIVATE DATA TYPES
-*/
-
-/*
-** PCB Queue structure
-**
-** Opaque to the rest of the kernel
-**
-** Typedef'd in the header: typedef struct pcb_queue_s *pcb_queue_t;
-*/
-struct pcb_queue_s {
- pcb_t *head;
- pcb_t *tail;
- enum pcb_queue_order_e order;
-};
-
-/*
-** PRIVATE GLOBAL VARIABLES
-*/
-
-// collection of queues
-static struct pcb_queue_s pcb_freelist_queue;
-static struct pcb_queue_s ready_queue;
-static struct pcb_queue_s waiting_queue;
-static struct pcb_queue_s sleeping_queue;
-static struct pcb_queue_s zombie_queue;
-static struct pcb_queue_s sioread_queue;
-
-/*
-** PUBLIC GLOBAL VARIABLES
-*/
-
-// public-facing queue handles
-pcb_queue_t pcb_freelist;
-pcb_queue_t ready;
-pcb_queue_t waiting;
-pcb_queue_t sleeping;
-pcb_queue_t zombie;
-pcb_queue_t sioread;
-
-// pointer to the currently-running process
-pcb_t *current;
-
-// the process table
-pcb_t ptable[N_PROCS];
-
-// next available PID
-uint_t next_pid;
-
-// pointer to the PCB for the 'init' process
-pcb_t *init_pcb;
-
-// table of state name strings
-const char state_str[N_STATES][4] = {
- [STATE_UNUSED] = "Unu", // "Unused"
- [STATE_NEW] = "New",
- [STATE_READY] = "Rdy", // "Ready"
- [STATE_RUNNING] = "Run", // "Running"
- [STATE_SLEEPING] = "Slp", // "Sleeping"
- [STATE_BLOCKED] = "Blk", // "Blocked"
- [STATE_WAITING] = "Wat", // "Waiting"
- [STATE_KILLED] = "Kil", // "Killed"
- [STATE_ZOMBIE] = "Zom" // "Zombie"
-};
-
-// table of priority name strings
-const char prio_str[N_PRIOS][5] = { [PRIO_HIGH] = "High",
- [PRIO_STD] = "User",
- [PRIO_LOW] = "Low ",
- [PRIO_DEFERRED] = "Def " };
-
-// table of queue ordering name strings
-const char ord_str[N_PRIOS][5] = { [O_FIFO] = "FIFO",
- [O_PRIO] = "PRIO",
- [O_PID] = "PID ",
- [O_WAKEUP] = "WAKE" };
-
-/*
-** PRIVATE FUNCTIONS
-*/
-
-/**
-** Priority search functions. These are used to traverse a supplied
-** queue looking for the queue entry that would precede the supplied
-** PCB when that PCB is inserted into the queue.
-**
-** Variations:
-** find_prev_wakeup() compares wakeup times
-** find_prev_priority() compares process priorities
-** find_prev_pid() compares PIDs
-**
-** Each assumes the queue should be in ascending order by the specified
-** comparison value.
-**
-** @param[in] queue The queue to search
-** @param[in] pcb The PCB to look for
-**
-** @return a pointer to the predecessor in the queue, or NULL if
-** this PCB would be at the beginning of the queue.
-*/
-static pcb_t *find_prev_wakeup(pcb_queue_t queue, pcb_t *pcb)
-{
- // sanity checks!
- assert1(queue != NULL);
- assert1(pcb != NULL);
-
- pcb_t *prev = NULL;
- pcb_t *curr = queue->head;
-
- while (curr != NULL && curr->wakeup <= pcb->wakeup) {
- prev = curr;
- curr = curr->next;
- }
-
- return prev;
-}
-
-static pcb_t *find_prev_priority(pcb_queue_t queue, pcb_t *pcb)
-{
- // sanity checks!
- assert1(queue != NULL);
- assert1(pcb != NULL);
-
- pcb_t *prev = NULL;
- pcb_t *curr = queue->head;
-
- while (curr != NULL && curr->priority <= pcb->priority) {
- prev = curr;
- curr = curr->next;
- }
-
- return prev;
-}
-
-static pcb_t *find_prev_pid(pcb_queue_t queue, pcb_t *pcb)
-{
- // sanity checks!
- assert1(queue != NULL);
- assert1(pcb != NULL);
-
- pcb_t *prev = NULL;
- pcb_t *curr = queue->head;
-
- while (curr != NULL && curr->pid <= pcb->pid) {
- prev = curr;
- curr = curr->next;
- }
-
- return prev;
-}
-
-/*
-** PUBLIC FUNCTIONS
-*/
-
-// a macro to simplify queue setup
-#define QINIT(q, s) \
- q = &q##_queue; \
- if (pcb_queue_reset(q, s) != SUCCESS) { \
- PANIC(0, "pcb_init can't reset " #q); \
- }
-
-/**
-** Name: pcb_init
-**
-** Initialization for the Process module.
-*/
-void pcb_init(void)
-{
-#if TRACING_INIT
- cio_puts(" Procs");
-#endif
-
- // there is no current process
- current = NULL;
-
- // set up the external links to the queues
- QINIT(pcb_freelist, O_FIFO);
- QINIT(ready, O_PRIO);
- QINIT(waiting, O_PID);
- QINIT(sleeping, O_WAKEUP);
- QINIT(zombie, O_PID);
- QINIT(sioread, O_FIFO);
-
- /*
- ** We statically allocate our PCBs, so we need to add them
- ** to the freelist before we can use them. If this changes
- ** so that we dynamicallyl allocate PCBs, this step either
- ** won't be required, or could be used to pre-allocate some
- ** number of PCB structures for future use.
- */
-
- pcb_t *ptr = ptable;
- for (int i = 0; i < N_PROCS; ++i) {
- pcb_free(ptr);
- ++ptr;
- }
-}
-
-/**
-** Name: pcb_alloc
-**
-** Allocate a PCB from the list of free PCBs.
-**
-** @param pcb Pointer to a pcb_t * where the PCB pointer will be returned.
-**
-** @return status of the allocation attempt
-*/
-int pcb_alloc(pcb_t **pcb)
-{
- // sanity check!
- assert1(pcb != NULL);
-
- // remove the first PCB from the free list
- pcb_t *tmp;
- if (pcb_queue_remove(pcb_freelist, &tmp) != SUCCESS) {
- return E_NO_PCBS;
- }
-
- *pcb = tmp;
- return SUCCESS;
-}
-
-/**
-** Name: pcb_free
-**
-** Return a PCB to the list of free PCBs.
-**
-** @param pcb Pointer to the PCB to be deallocated.
-*/
-void pcb_free(pcb_t *pcb)
-{
- if (pcb != NULL) {
- // mark the PCB as available
- pcb->state = STATE_UNUSED;
-
- // add it to the free list
- int status = pcb_queue_insert(pcb_freelist, pcb);
-
- // if that failed, we're in trouble
- if (status != SUCCESS) {
- sprint(b256, "pcb_free(0x%08x) status %d", (uint32_t)pcb, status);
- PANIC(0, b256);
- }
- }
-}
-
-/**
-** Name: pcb_zombify
-**
-** Turn the indicated process into a Zombie. This function
-** does most of the real work for exit() and kill() calls.
-** Is also called from the scheduler and dispatcher.
-**
-** @param pcb Pointer to the newly-undead PCB
-*/
-void pcb_zombify(register pcb_t *victim)
-{
- // should this be an error?
- if (victim == NULL) {
- return;
- }
-
- // every process must have a parent, even if it's 'init'
- assert(victim->parent != NULL);
-
- /*
- ** We need to locate the parent of this process. We also need
- ** to reparent any children of this process. We do these in
- ** a single loop.
- */
- pcb_t *parent = victim->parent;
- pcb_t *zchild = NULL;
-
- // two PIDs we will look for
- uint_t vicpid = victim->pid;
-
- // speed up access to the process table entries
- register pcb_t *curr = ptable;
-
- for (int i = 0; i < N_PROCS; ++i, ++curr) {
- // make sure this is a valid entry
- if (curr->state == STATE_UNUSED) {
- continue;
- }
-
- // if this is our parent, just keep going - we continue
- // iterating to find all the children of this process.
- if (curr == parent) {
- continue;
- }
-
- if (curr->parent == victim) {
- // found a child - reparent it
- curr->parent = init_pcb;
-
- // see if this child is already undead
- if (curr->state == STATE_ZOMBIE) {
- // if it's already a zombie, remember it, so we
- // can pass it on to 'init'; also, if there are
- // two or more zombie children, it doesn't matter
- // which one we pick here, as the others will be
- // collected when 'init' loops
- zchild = curr;
- }
- }
- }
-
- /*
- ** If we found a child that was already terminated, we need to
- ** wake up the init process if it's already waiting.
- **
- ** Note: we only need to do this for one Zombie child process -
- ** init will loop and collect the others after it finishes with
- ** this one.
- **
- ** Also note: it's possible that the exiting process' parent is
- ** also init, which means we're letting one of zombie children
- ** of the exiting process be cleaned up by init before the
- ** existing process itself is cleaned up by init. This will work,
- ** because after init cleans up the zombie, it will loop and
- ** call waitpid() again, by which time this exiting process will
- ** be marked as a zombie.
- */
- if (zchild != NULL && init_pcb->state == STATE_WAITING) {
- // dequeue the zombie
- assert(pcb_queue_remove_this(zombie, zchild) == SUCCESS);
-
- assert(pcb_queue_remove_this(waiting, init_pcb) == SUCCESS);
-
- // intrinsic return value is the PID
- RET(init_pcb) = zchild->pid;
-
- // may also want to return the exit status
- int32_t *ptr = (int32_t *)ARG(init_pcb, 2);
-
- if (ptr != NULL) {
- // ********************************************************
- // ** Potential VM issue here! This code assigns the exit
- // ** status into a variable in the parent's address space.
- // ** This works in the baseline because we aren't using
- // ** any type of memory protection. If address space
- // ** separation is implemented, this code will very likely
- // ** STOP WORKING, and will need to be fixed.
- // ********************************************************
- *ptr = zchild->exit_status;
- }
-
- // all done - schedule 'init', and clean up the zombie
- schedule(init_pcb);
- pcb_cleanup(zchild);
- }
-
- /*
- ** Now, deal with the parent of this process. If the parent is
- ** already waiting, just wake it up and clean up this process.
- ** Otherwise, this process becomes a zombie.
- **
- ** Note: if the exiting process' parent is init and we just woke
- ** init up to deal with a zombie child of the exiting process,
- ** init's status won't be Waiting any more, so we don't have to
- ** worry about it being scheduled twice.
- */
-
- if (parent->state == STATE_WAITING) {
- // verify that the parent is either waiting for this process
- // or is waiting for any of its children
- uint32_t target = ARG(parent, 1);
-
- if (target == 0 || target == vicpid) {
- // the parent is waiting for this child or is waiting
- // for any of its children, so we can wake it up.
-
- // intrinsic return value is the PID
- RET(parent) = vicpid;
-
- // may also want to return the exit status
- int32_t *ptr = (int32_t *)ARG(parent, 2);
-
- if (ptr != NULL) {
- // ********************************************************
- // ** Potential VM issue here! This code assigns the exit
- // ** status into a variable in the parent's address space.
- // ** This works in the baseline because we aren't using
- // ** any type of memory protection. If address space
- // ** separation is implemented, this code will very likely
- // ** STOP WORKING, and will need to be fixed.
- // ********************************************************
- *ptr = victim->exit_status;
- }
-
- // all done - schedule the parent, and clean up the zombie
- schedule(parent);
- pcb_cleanup(victim);
-
- return;
- }
- }
-
- /*
- ** The parent isn't waiting OR is waiting for a specific child
- ** that isn't this exiting process, so we become a Zombie.
- **
- ** This code assumes that Zombie processes are *not* in
- ** a queue, but instead are just in the process table with
- ** a state of 'Zombie'. This simplifies life immensely,
- ** because we won't need to dequeue it when it is collected
- ** by its parent.
- */
-
- victim->state = STATE_ZOMBIE;
- assert(pcb_queue_insert(zombie, victim) == SUCCESS);
-
- /*
- ** Note: we don't call _dispatch() here - we leave that for
- ** the calling routine, as it's possible we don't need to
- ** choose a new current process.
- */
-}
-
-/**
-** Name: pcb_cleanup
-**
-** Reclaim a process' data structures
-**
-** @param pcb The PCB to reclaim
-*/
-void pcb_cleanup(pcb_t *pcb)
-{
-#if TRACING_PCB
- cio_printf("** pcb_cleanup(0x%08x)\n", (uint32_t)pcb);
-#endif
-
- // avoid deallocating a NULL pointer
- if (pcb == NULL) {
- // should this be an error?
- return;
- }
-
- // we need to release all the VM data structures and frames
- user_cleanup(pcb);
-
- // release the PCB itself
- pcb_free(pcb);
-}
-
-/**
-** Name: pcb_find_pid
-**
-** Locate the PCB for the process with the specified PID
-**
-** @param pid The PID to be located
-**
-** @return Pointer to the PCB, or NULL
-*/
-pcb_t *pcb_find_pid(uint_t pid)
-{
- // must be a valid PID
- if (pid < 1) {
- return NULL;
- }
-
- // scan the process table
- pcb_t *p = ptable;
-
- for (int i = 0; i < N_PROCS; ++i, ++p) {
- if (p->pid == pid && p->state != STATE_UNUSED) {
- return p;
- }
- }
-
- // didn't find it!
- return NULL;
-}
-
-/**
-** Name: pcb_find_ppid
-**
-** Locate the PCB for the process with the specified parent
-**
-** @param pid The PID to be located
-**
-** @return Pointer to the PCB, or NULL
-*/
-pcb_t *pcb_find_ppid(uint_t pid)
-{
- // must be a valid PID
- if (pid < 1) {
- return NULL;
- }
-
- // scan the process table
- pcb_t *p = ptable;
-
- for (int i = 0; i < N_PROCS; ++i, ++p) {
- assert1(p->parent != NULL);
- if (p->parent->pid == pid && p->parent->state != STATE_UNUSED) {
- return p;
- }
- }
-
- // didn't find it!
- return NULL;
-}
-
-/**
-** Name: pcb_queue_reset
-**
-** Initialize a PCB queue. We assume that whatever data may be
-** in the queue structure can be overwritten.
-**
-** @param queue[out] The queue to be initialized
-** @param order[in] The desired ordering for the queue
-**
-** @return status of the init request
-*/
-int pcb_queue_reset(pcb_queue_t queue, enum pcb_queue_order_e style)
-{
- // sanity check
- assert1(queue != NULL);
-
- // make sure the style is valid
- if (style < O_FIRST_STYLE || style > O_LAST_STYLE) {
- return E_BAD_PARAM;
- }
-
- // reset the queue
- queue->head = queue->tail = NULL;
- queue->order = style;
-
- return SUCCESS;
-}
-
-/**
-** Name: pcb_queue_empty
-**
-** Determine whether a queue is empty. Essentially just a wrapper
-** for the PCB_QUEUE_EMPTY() macro, for use outside this module.
-**
-** @param[in] queue The queue to check
-**
-** @return true if the queue is empty, else false
-*/
-bool_t pcb_queue_empty(pcb_queue_t queue)
-{
- // if there is no queue, blow up
- assert1(queue != NULL);
-
- return PCB_QUEUE_EMPTY(queue);
-}
-
-/**
-** Name: pcb_queue_length
-**
-** Return the count of elements in the specified queue.
-**
-** @param[in] queue The queue to check
-**
-** @return the count (0 if the queue is empty)
-*/
-uint_t pcb_queue_length(const pcb_queue_t queue)
-{
- // sanity check
- assert1(queue != NULL);
-
- // this is pretty simple
- register pcb_t *tmp = queue->head;
- register int num = 0;
-
- while (tmp != NULL) {
- ++num;
- tmp = tmp->next;
- }
-
- return num;
-}
-
-/**
-** Name: pcb_queue_insert
-**
-** Inserts a PCB into the indicated queue.
-**
-** @param queue[in,out] The queue to be used
-** @param pcb[in] The PCB to be inserted
-**
-** @return status of the insertion request
-*/
-int pcb_queue_insert(pcb_queue_t queue, pcb_t *pcb)
-{
- // sanity checks
- assert1(queue != NULL);
- assert1(pcb != NULL);
-
- // if this PCB is already in a queue, we won't touch it
- if (pcb->next != NULL) {
- // what to do? we let the caller decide
- return E_BAD_PARAM;
- }
-
- // is the queue empty?
- if (queue->head == NULL) {
- queue->head = queue->tail = pcb;
- return SUCCESS;
- }
- assert1(queue->tail != NULL);
-
- // no, so we need to search it
- pcb_t *prev = NULL;
-
- // find the predecessor node
- switch (queue->order) {
- case O_FIFO:
- prev = queue->tail;
- break;
- case O_PRIO:
- prev = find_prev_priority(queue, pcb);
- break;
- case O_PID:
- prev = find_prev_pid(queue, pcb);
- break;
- case O_WAKEUP:
- prev = find_prev_wakeup(queue, pcb);
- break;
- default:
- // do we need something more specific here?
- return E_BAD_PARAM;
- }
-
- // OK, we found the predecessor node; time to do the insertion
-
- if (prev == NULL) {
- // there is no predecessor, so we're
- // inserting at the front of the queue
- pcb->next = queue->head;
- if (queue->head == NULL) {
- // empty queue!?! - should we panic?
- queue->tail = pcb;
- }
- queue->head = pcb;
-
- } else if (prev->next == NULL) {
- // append at end
- prev->next = pcb;
- queue->tail = pcb;
-
- } else {
- // insert between prev & prev->next
- pcb->next = prev->next;
- prev->next = pcb;
- }
-
- return SUCCESS;
-}
-
-/**
-** Name: pcb_queue_remove
-**
-** Remove the first PCB from the indicated queue.
-**
-** @param queue[in,out] The queue to be used
-** @param pcb[out] Pointer to where the PCB pointer will be saved
-**
-** @return status of the removal request
-*/
-int pcb_queue_remove(pcb_queue_t queue, pcb_t **pcb)
-{
- //sanity checks
- assert1(queue != NULL);
- assert1(pcb != NULL);
-
- // can't get anything if there's nothing to get!
- if (PCB_QUEUE_EMPTY(queue)) {
- return E_EMPTY_QUEUE;
- }
-
- // take the first entry from the queue
- pcb_t *tmp = queue->head;
- queue->head = tmp->next;
-
- // disconnect it completely
- tmp->next = NULL;
-
- // was this the last thing in the queue?
- if (queue->head == NULL) {
- // yes, so clear the tail pointer for consistency
- queue->tail = NULL;
- }
-
- // save the pointer
- *pcb = tmp;
-
- return SUCCESS;
-}
-
-/**
-** Name: pcb_queue_remove_this
-**
-** Remove the specified PCB from the indicated queue.
-**
-** We don't return the removed pointer, because the calling
-** routine must already have it (because it was supplied
-** to us in the call).
-**
-** @param queue[in,out] The queue to be used
-** @param pcb[in] Pointer to the PCB to be removed
-**
-** @return status of the removal request
-*/
-int pcb_queue_remove_this(pcb_queue_t queue, pcb_t *pcb)
-{
- //sanity checks
- assert1(queue != NULL);
- assert1(pcb != NULL);
-
- // can't get anything if there's nothing to get!
- if (PCB_QUEUE_EMPTY(queue)) {
- return E_EMPTY_QUEUE;
- }
-
- // iterate through the queue until we find the desired PCB
- pcb_t *prev = NULL;
- pcb_t *curr = queue->head;
-
- while (curr != NULL && curr != pcb) {
- prev = curr;
- curr = curr->next;
- }
-
- // case prev curr next interpretation
- // ==== ==== ==== ==== ============================
- // 1. 0 0 -- *** CANNOT HAPPEN ***
- // 2. 0 !0 0 removing only element
- // 3. 0 !0 !0 removing first element
- // 4. !0 0 -- *** NOT FOUND ***
- // 5. !0 !0 0 removing from end
- // 6. !0 !0 !0 removing from middle
-
- if (curr == NULL) {
- // case 1
- assert(prev != NULL);
- // case 4
- return E_NOT_FOUND;
- }
-
- // connect predecessor to successor
- if (prev != NULL) {
- // not the first element
- // cases 5 and 6
- prev->next = curr->next;
- } else {
- // removing first element
- // cases 2 and 3
- queue->head = curr->next;
- }
-
- // if this was the last node (cases 2 and 5),
- // also need to reset the tail pointer
- if (curr->next == NULL) {
- // if this was the only entry (2), prev is NULL,
- // so this works for that case, too
- queue->tail = prev;
- }
-
- // unlink current from queue
- curr->next = NULL;
-
- // there's a possible consistancy problem here if somehow
- // one of the queue pointers is NULL and the other one
- // is not NULL
-
- assert1((queue->head == NULL && queue->tail == NULL) ||
- (queue->head != NULL && queue->tail != NULL));
-
- return SUCCESS;
-}
-
-/**
-** Name: pcb_queue_peek
-**
-** Return the first PCB from the indicated queue, but don't
-** remove it from the queue.
-**
-** @param queue[in] The queue to be used
-**
-** @return the PCB poiner, or NULL if the queue is empty
-*/
-pcb_t *pcb_queue_peek(const pcb_queue_t queue)
-{
- //sanity check
- assert1(queue != NULL);
-
- // can't get anything if there's nothing to get!
- if (PCB_QUEUE_EMPTY(queue)) {
- return NULL;
- }
-
- // just return the first entry from the queue
- return queue->head;
-}
-
-/*
-** Scheduler routines
-*/
-
-/**
-** schedule(pcb)
-**
-** Schedule the supplied process
-**
-** @param pcb Pointer to the PCB of the process to be scheduled
-*/
-void schedule(pcb_t *pcb)
-{
- // sanity check
- assert1(pcb != NULL);
-
- // check for a killed process
- if (pcb->state == STATE_KILLED) {
- // TODO figure out what to do now
- return;
- }
-
- // mark it as ready
- pcb->state = STATE_READY;
-
- // add it to the ready queue
- if (pcb_queue_insert(ready, pcb) != SUCCESS) {
- PANIC(0, "schedule insert fail");
- }
-}
-
-/**
-** dispatch()
-**
-** Select the next process to receive the CPU
-*/
-void dispatch(void)
-{
- // verify that there is no current process
- assert(current == NULL);
-
- // grab whoever is at the head of the queue
- int status = pcb_queue_remove(ready, &current);
- if (status != SUCCESS) {
- sprint(b256, "dispatch queue remove failed, code %d", status);
- PANIC(0, b256);
- }
-
- // set the process up for success
- current->state = STATE_RUNNING;
- current->ticks = QUANTUM_STANDARD;
-}
-
-/*
-** Debugging/tracing routines
-*/
-
-/**
-** ctx_dump(msg,context)
-**
-** Dumps the contents of this process context to the console
-**
-** @param msg[in] An optional message to print before the dump
-** @param c[in] The context to dump out
-*/
-void ctx_dump(const char *msg, register context_t *c)
-{
- // first, the message (if there is one)
- if (msg) {
- cio_puts(msg);
- }
-
- // the pointer
- cio_printf(" @ %08x: ", (uint32_t)c);
-
- // if it's NULL, why did you bother calling me?
- if (c == NULL) {
- cio_puts(" NULL???\n");
- return;
- }
-
- // now, the contents
- cio_printf("ss %04x gs %04x fs %04x es %04x ds %04x cs %04x\n",
- c->ss & 0xff, c->gs & 0xff, c->fs & 0xff, c->es & 0xff,
- c->ds & 0xff, c->cs & 0xff);
- cio_printf(" edi %08x esi %08x ebp %08x esp %08x\n", c->edi, c->esi,
- c->ebp, c->esp);
- cio_printf(" ebx %08x edx %08x ecx %08x eax %08x\n", c->ebx, c->edx,
- c->ecx, c->eax);
- cio_printf(" vec %08x cod %08x eip %08x eflags %08x\n", c->vector, c->code,
- c->eip, c->eflags);
-}
-
-/**
-** ctx_dump_all(msg)
-**
-** dump the process context for all active processes
-**
-** @param msg[in] Optional message to print
-*/
-void ctx_dump_all(const char *msg)
-{
- if (msg != NULL) {
- cio_puts(msg);
- }
-
- int n = 0;
- register pcb_t *pcb = ptable;
- for (int i = 0; i < N_PROCS; ++i, ++pcb) {
- if (pcb->state != STATE_UNUSED) {
- ++n;
- cio_printf("%2d(%d): ", n, pcb->pid);
- ctx_dump(NULL, pcb->context);
- }
- }
-}
-
-/**
-** pcb_dump(msg,pcb,all)
-**
-** Dumps the contents of this PCB to the console
-**
-** @param msg[in] An optional message to print before the dump
-** @param pcb[in] The PCB to dump
-** @param all[in] Dump all the contents?
-*/
-void pcb_dump(const char *msg, register pcb_t *pcb, bool_t all)
-{
- // first, the message (if there is one)
- if (msg) {
- cio_puts(msg);
- }
-
- // the pointer
- cio_printf(" @ %08x:", (uint32_t)pcb);
-
- // if it's NULL, why did you bother calling me?
- if (pcb == NULL) {
- cio_puts(" NULL???\n");
- return;
- }
-
- cio_printf(" %d %s", pcb->pid,
- pcb->state >= N_STATES ? "???" : state_str[pcb->state]);
-
- if (!all) {
- // just printing IDs and states on one line
- return;
- }
-
- // now, the rest of the contents
- cio_printf(" %s",
- pcb->priority >= N_PRIOS ? "???" : prio_str[pcb->priority]);
-
- cio_printf(" ticks %u xit %d wake %08x\n", pcb->ticks, pcb->exit_status,
- pcb->wakeup);
-
- cio_printf(" parent %08x", (uint32_t)pcb->parent);
- if (pcb->parent != NULL) {
- cio_printf(" (%u)", pcb->parent->pid);
- }
-
- cio_printf(" next %08x context %08x pde %08x", (uint32_t)pcb->next,
- (uint32_t)pcb->context, (uint32_t)pcb->pdir);
-
- cio_putchar('\n');
-}
-
-/**
-** pcb_queue_dump(msg,queue,contents)
-**
-** @param msg[in] Optional message to print
-** @param queue[in] The queue to dump
-** @param contents[in] Also dump (some) contents?
-*/
-void pcb_queue_dump(const char *msg, pcb_queue_t queue, bool_t contents)
-{
- // report on this queue
- cio_printf("%s: ", msg);
- if (queue == NULL) {
- cio_puts("NULL???\n");
- return;
- }
-
- // first, the basic data
- cio_printf("head %08x tail %08x", (uint32_t)queue->head,
- (uint32_t)queue->tail);
-
- // next, how the queue is ordered
- cio_printf(" order %s\n",
- queue->order >= N_ORDERINGS ? "????" : ord_str[queue->order]);
-
- // if there are members in the queue, dump the first few PIDs
- if (contents && queue->head != NULL) {
- cio_puts(" PIDs: ");
- pcb_t *tmp = queue->head;
- for (int i = 0; i < 5 && tmp != NULL; ++i, tmp = tmp->next) {
- cio_printf(" [%u]", tmp->pid);
- }
-
- if (tmp != NULL) {
- cio_puts(" ...");
- }
-
- cio_putchar('\n');
- }
-}
-
-/**
-** ptable_dump(msg,all)
-**
-** dump the contents of the "active processes" table
-**
-** @param msg[in] Optional message to print
-** @param all[in] Dump all or only part of the relevant data
-*/
-void ptable_dump(const char *msg, bool_t all)
-{
- if (msg) {
- cio_puts(msg);
- }
- cio_putchar(' ');
-
- int used = 0;
- int empty = 0;
-
- register pcb_t *pcb = ptable;
- for (int i = 0; i < N_PROCS; ++i) {
- if (pcb->state == STATE_UNUSED) {
- // an empty slot
- ++empty;
-
- } else {
- // a non-empty slot
- ++used;
-
- // if not dumping everything, add commas if needed
- if (!all && used) {
- cio_putchar(',');
- }
-
- // report the table slot #
- cio_printf(" #%d:", i);
-
- // and dump the contents
- pcb_dump(NULL, pcb, all);
- }
- }
-
- // only need this if we're doing one-line output
- if (!all) {
- cio_putchar('\n');
- }
-
- // sanity check - make sure we saw the correct number of table slots
- if ((used + empty) != N_PROCS) {
- cio_printf("Table size %d, used %d + empty %d = %d???\n", N_PROCS, used,
- empty, used + empty);
- }
-}
-
-/**
-** Name: ptable_dump_counts
-**
-** Prints basic information about the process table (number of
-** entries, number with each process state, etc.).
-*/
-void ptable_dump_counts(void)
-{
- uint_t nstate[N_STATES] = { 0 };
- uint_t unknown = 0;
-
- int n = 0;
- pcb_t *ptr = ptable;
- while (n < N_PROCS) {
- if (ptr->state < 0 || ptr->state >= N_STATES) {
- ++unknown;
- } else {
- ++nstate[ptr->state];
- }
- ++n;
- ++ptr;
- }
-
- cio_printf("Ptable: %u ***", unknown);
- for (n = 0; n < N_STATES; ++n) {
- if (nstate[n]) {
- cio_printf(" %u %s", nstate[n],
- state_str[n] != NULL ? state_str[n] : "???");
- }
- }
- cio_putchar('\n');
-}