1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
|
use std::collections::HashMap;
use super::{
Result,
lexer::{Token, TokenKind},
util::{SpanParserError, TokenError},
};
use TokenKind as K;
#[derive(Clone, Debug)]
struct Macro<'s> {
contents: Vec<Token<'s>>,
args: Vec<(usize, usize)>,
num_args: usize,
}
struct PreProcessor<'s> {
idx: usize,
tokens: Vec<Token<'s>>,
macros: HashMap<&'s str, Macro<'s>>,
}
impl<'s> PreProcessor<'s> {
fn new(tokens: Vec<Token<'s>>) -> Self {
let macros = HashMap::new();
Self {
idx: 0,
tokens,
macros,
}
}
fn next(&mut self) -> Token<'s> {
if self.idx >= self.tokens.len() {
Token {
span: self.tokens[self.idx - 1].span,
content: "",
kind: K::Eof,
}
} else {
self.idx += 1;
self.tokens[self.idx - 1]
}
}
fn expect(&mut self, kind: TokenKind) -> Result<Token<'s>> {
let token = self.next();
if token.kind == kind {
Ok(token)
} else {
token.token_err(format!("expected {kind}, got {}", token.kind))
}
}
fn parse_int(&mut self) -> Result<usize> {
let token = self.expect(K::Integer)?;
token.content.parse().span_err(token.span)
}
fn read_macro(&mut self) -> Result<Macro<'s>> {
let mut nest_counter = 0;
let mut contents = vec![];
let mut args = vec![];
let mut num_args = 0;
loop {
let token = self.next();
match token.kind {
K::Argument => {
let num = self.parse_int()?;
args.push((num, contents.len()));
num_args = num_args.max(num);
}
K::MacroDefine => {
nest_counter += 1;
contents.push(token);
}
K::MacroEnd => {
if nest_counter > 0 {
nest_counter -= 1;
contents.push(token);
} else {
break;
}
}
K::Eof => return token.token_err("macro definition was not closed"),
_ => contents.push(token),
}
}
args.sort_by(|(_, l), (_, r)| l.cmp(r).reverse());
Ok(Macro {
contents,
args,
num_args,
})
}
fn read_macros(&mut self) -> Result<Vec<Token<'s>>> {
let mut buffer = vec![];
self.idx = 0;
loop {
let token = self.next();
if token.kind == K::Eof {
break;
}
if token.kind != K::MacroDefine {
buffer.push(token);
continue;
}
let name = self.expect(K::Identifier)?.content;
let content = self.read_macro()?;
self.macros.insert(name, content);
}
Ok(buffer)
}
fn pass(&mut self) -> Result<Vec<Token<'s>>> {
let mut buffer = self.read_macros()?;
let mut idx = 0;
loop {
if idx >= buffer.len() {
break;
}
let token = buffer[idx];
if token.kind != K::Identifier {
idx += 1;
continue;
}
// TODO: remove clone
let Some(mac) = self.macros.get(token.content).cloned() else {
idx += 1;
continue;
};
let mut args = vec![];
for n in 1..=mac.num_args {
let arg = buffer[idx + n];
if matches!(arg.kind, K::Eof | K::LineSeparator) {
return arg.token_err("missing macro argument");
}
args.push(arg);
}
let mut content = mac.contents;
for (n, idx) in mac.args {
// this works since mac.args is stored by idx descending
content.insert(idx, args[n - 1]);
}
let len = content.len();
buffer.splice(idx..=(idx + mac.num_args), content);
idx += len + 1;
}
Ok(buffer)
}
fn process(&mut self) -> Result<Vec<Token<'s>>> {
loop {
let result = self.pass()?;
if self.tokens == result {
return Ok(result);
}
self.tokens = result;
}
}
}
pub fn process(tokens: Vec<Token<'_>>) -> Result<Vec<Token<'_>>> {
PreProcessor::new(tokens).process()
}
|