mips/masm/asm_mips32.c

678 lines
15 KiB
C

#include <merror.h>
#include <mips.h>
#include <mips32.h>
#include <stdio.h>
#include <stdlib.h>
#include <elf.h>
#include <string.h>
#include <stddef.h>
#include "asm.h"
#include "mlimits.h"
#include "parse.h"
#include "parse_mips32.h"
extern char *current_file;
static int handle_directive(struct assembler *asm,
struct mips32_directive *directive)
{
switch (directive->type) {
case MIPS32_DIRECTIVE_SECTION: {
struct section_table *sec_tbl = &asm->parser.sec_tbl;
struct section *sec;
if (sectbl_get(sec_tbl, &sec, directive->name)
== M_SUCCESS) {
sec_tbl->current = sec;
break;
}
if (sectbl_alloc(sec_tbl, &sec, directive->name))
return M_ERROR;
sec_tbl->current = sec;
break;
}
case MIPS32_DIRECTIVE_ALIGN: {
asm->parser.sec_tbl.current->alignment =
1 << directive->align;
break;
}
case MIPS32_DIRECTIVE_SPACE: {
struct section_entry entry;
entry.type = ENT_NO_DATA;
entry.size = directive->space;
if (sec_push(asm->parser.sec_tbl.current, entry))
return M_ERROR;
break;
}
case MIPS32_DIRECTIVE_WORD: {
for (uint32_t i = 0; i < directive->len; i++) {
struct section_entry entry;
entry.type = ENT_WORD;
entry.word = directive->words[i];
if (sec_push(asm->parser.sec_tbl.current, entry))
return M_ERROR;
}
break;
}
case MIPS32_DIRECTIVE_HALF: {
for (uint32_t i = 0; i < directive->len; i++) {
struct section_entry entry;
entry.type = ENT_HALF;
entry.half = directive->halfs[i];
if (sec_push(asm->parser.sec_tbl.current, entry))
return M_ERROR;
}
break;
}
case MIPS32_DIRECTIVE_BYTE: {
for (uint32_t i = 0; i < directive->len; i++) {
struct section_entry entry;
entry.type = ENT_BYTE;
entry.byte = directive->bytes[i];
if (sec_push(asm->parser.sec_tbl.current, entry))
return M_ERROR;
}
break;
}
case MIPS32_DIRECTIVE_EXTERN: {
struct symbol symbol;
if (symtbl_find(&asm->parser.sym_tbl, NULL, directive->name)
== M_SUCCESS) {
ERROR("cannot extern local symbol '%s'",
directive->name);
return M_ERROR;
}
symbol = (struct symbol) {
.name = "",
.sec = asm->parser.sec_tbl.current,
.index = asm->parser.sec_tbl.current->count,
.flag = SYM_EXTERNAL,
};
strcpy(symbol.name, directive->name);
if (symtbl_push(&asm->parser.sym_tbl, symbol))
return M_ERROR;
break;
}
case MIPS32_DIRECTIVE_GLOBL: {
struct symbol symbol;
if (symtbl_find(&asm->parser.sym_tbl, NULL, directive->name)
== M_SUCCESS) {
symbol.flag = SYM_GLOBAL;
break;
}
symbol = (struct symbol) {
.name = "",
.sec = NULL,
.index = 0,
.flag = SYM_GLOBAL,
};
strcpy(symbol.name, directive->name);
if (symtbl_push(&asm->parser.sym_tbl, symbol))
return M_ERROR;
break;
}
}
return M_SUCCESS;
}
static int parse_file(struct assembler *asm)
{
struct parser *parser = &asm->parser;
while (1) {
struct expr expr;
if (parser_next(parser, &expr)) {
break;
}
switch (expr.type) {
case EXPR_INS:
struct section_entry entry;
entry.type = ENT_INS;
entry.size = sizeof(struct mips32_instruction);
entry.ins = expr.ins;
if (sec_push(parser->sec_tbl.current, entry))
return M_ERROR;
break;
case EXPR_DIRECTIVE:
if (handle_directive(asm, &expr.directive.mips32))
return M_ERROR;
break;
case EXPR_CONSTANT:
case EXPR_LABEL:
// nothing needed to be done
break;
}
}
struct section_meta *meta = malloc(sizeof(struct section_meta) *
parser->sec_tbl.count);
if (meta == NULL) {
ERROR("cannot alloc");
return M_ERROR;
}
asm->meta = meta;
size_t ptr = 0;
for (uint32_t i = 0; i < parser->sec_tbl.count; i++) {
struct section *sec = &parser->sec_tbl.sections[i];
meta[i].v_addr = ptr;
ptr += sec_size(sec);
}
return M_SUCCESS;
}
static int assemble_phdr(struct assembler *asm, Elf32_Phdr **res,
uint32_t *res2)
{
struct parser *parser = &asm->parser;
Elf32_Phdr *phdr = malloc(sizeof(Elf32_Phdr) *
parser->sec_tbl.count);
if (phdr == NULL) {
ERROR("cannot alloc");
return M_ERROR;;
}
for (uint32_t i = 0; i < parser->sec_tbl.count; i++) {
Elf32_Phdr *hdr = &phdr[i];
struct section *sec = &parser->sec_tbl.sections[i];
size_t size = sec_size(sec);
hdr->p_type = PT_LOAD;
hdr->p_flags = (sec->execute << 0) |
(sec->write << 1) |
(sec->read << 2);
hdr->p_offset = 0;
hdr->p_vaddr = 0;
hdr->p_paddr = 0;
hdr->p_filesz = size;
hdr->p_memsz = size;
hdr->p_align = sec->alignment;
}
*res = phdr;
*res2 = parser->sec_tbl.count;
return M_SUCCESS;
}
static int assemble_symtbl(struct assembler *asm, Elf32_Sym **res,
uint32_t *res2)
{
Elf32_Sym *stbl = malloc(sizeof(Elf32_Sym) * asm->parser.sym_tbl
.count);
size_t size = 0;
if (stbl == NULL)
return M_ERROR;
for (uint32_t i = 0; i < asm->parser.sym_tbl.count; i++) {
struct symbol *sym = &asm->parser.sym_tbl.symbols[i];
size_t str_off;
unsigned char bind;
unsigned char type = STT_NOTYPE;
if (strtbl_write_str(&asm->str_tbl, sym->name, &str_off)) {
free(stbl);
return M_ERROR;
}
if (sym->flag != SYM_LOCAL)
bind = STB_LOCAL;
else
bind = STB_GLOBAL;
stbl[i] = (Elf32_Sym) {
.st_name = str_off,
.st_value = sym->index,
.st_size = 0,
.st_info = ELF32_ST_INFO(bind, type),
.st_other = ELF32_ST_VISIBILITY(STV_DEFAULT),
.st_shndx = asm->meta[sym->sec->index].shdr_idx,
};
size = i + 1;
};
*res = stbl;
*res2 = size;
return M_SUCCESS;
}
static int assemble_reltbl_sec(struct assembler *asm, Elf32_Sym *symtbl,
uint32_t symtbl_len, struct section *sec)
{
uint32_t len = 0;
for (uint32_t i = 0; i < asm->parser.ref_tbl.count; i++) {
struct reference *ref = &asm->parser.ref_tbl.references[i];
if (ref->section->index == sec->index) {
len++;
}
}
if (len == 0) {
asm->meta[sec->index].reltbl = NULL;
return M_SUCCESS;
}
Elf32_Rela *reltbl = malloc(sizeof(Elf32_Rela) * len);
if (reltbl == NULL) {
ERROR("cannot alloc");
return M_ERROR;
}
for (uint32_t i = 0; i < asm->parser.ref_tbl.count; i++) {
struct reference *ref = &asm->parser.ref_tbl.references[i];
struct mips32_instruction *ins = &ref->section->
entries[ref->index].ins.mips32;
struct section_meta *meta = &asm->meta[ref->section->index];
if (ref->section->index != sec->index) {
continue;
}
int32_t addend = 0;
unsigned char type = 0;
switch (ref->type) {
case REF_OFFESET:
addend = ins->B_data.offset;
type = R_MIPS_PC16;
break;
case REF_TARGET:
addend = ins->J_data.target;
type = R_MIPS_26;
break;
}
int32_t symidx = -1;
for (uint32_t i = 0; i < symtbl_len; i++) {
Elf32_Sym *sym = &symtbl[i];
const char *str = &asm->str_tbl.ptr[sym->st_name];
if (strcmp(ref->name, str) == 0) {
symidx = i;
break;
}
}
if (symidx == -1) {
ERROR("undefined symbol '%s'", ref->name);
free(reltbl);
return M_ERROR;
}
reltbl[i] = (Elf32_Rela) {
.r_info = ELF32_R_INFO(symidx, type),
.r_addend = addend,
.r_offset = meta->v_addr +
sec_index(ref->section, ref->index),
};
};
asm->meta[sec->index].reltbl_len = len;
asm->meta[sec->index].reltbl = reltbl;
return M_SUCCESS;
}
static int assemble_reltbl(struct assembler *asm, Elf32_Sym *symtbl,
uint32_t symtbl_len)
{
for (uint32_t i = 0; i < asm->parser.sec_tbl.count; i++) {
struct section *sec = &asm->parser.sec_tbl.sections[i];
if (assemble_reltbl_sec(asm, symtbl, symtbl_len, sec))
return M_ERROR;
}
return M_SUCCESS;
}
static int assemble_shdr(struct assembler *asm, Elf32_Shdr **res,
uint32_t *res2)
{
uint32_t max_entries = 4; // symtab, strtab, shstrtab
max_entries += asm->parser.sec_tbl.count; // sections
max_entries += asm->parser.sec_tbl.count; // reltabs per section
Elf32_Shdr *shdr = malloc(sizeof(Elf32_Shdr) * max_entries);
size_t str_off;
uint32_t count = 0;
// eeltables
for (uint32_t i = 0; i < asm->parser.sec_tbl.count; i++) {
if (asm->meta[i].reltbl == NULL)
continue;
struct section *sec = &asm->parser.sec_tbl.sections[i];
const char *prefix = ".reltab.";
char reltab_name[MAX_LEX_LENGTH + 8];
strcpy(reltab_name, prefix);
strcat(reltab_name, sec->name);
if (strtbl_write_str(&asm->shstr_tbl, reltab_name, &str_off)) {
free(shdr);
return M_ERROR;
}
asm->meta[i].reltbl_idx = count;
shdr[count++] = (Elf32_Shdr) {
.sh_name = str_off,
.sh_type = SHT_RELA,
.sh_flags = 0,
.sh_addr = 0,
.sh_offset = 0,
.sh_size = 0,
.sh_link = 0,
.sh_info = 0,
.sh_addralign = 1,
.sh_entsize = sizeof(Elf32_Rela),
};
}
// for each section
for (uint32_t i = 0; i < asm->parser.sec_tbl.count; i++) {
struct section *sec = &asm->parser.sec_tbl.sections[i];
char name[MAX_LEX_LENGTH+1] = ".";
strcat(name, sec->name);
if (strtbl_write_str(&asm->shstr_tbl, name, &str_off)) {
free(shdr);
return M_ERROR;
}
asm->meta[i].shdr_idx = count;
if (asm->meta[i].reltbl != NULL)
shdr[asm->meta[i].reltbl_idx].sh_info = count;
shdr[count++] = (Elf32_Shdr){
.sh_name = str_off,
.sh_type = SHT_PROGBITS,
.sh_flags = (sec->write << 0) | (sec->execute << 2) |
SHF_ALLOC,
.sh_addr = 0,
.sh_offset = 0,
.sh_size = 0,
.sh_link = 0,
.sh_info = 0,
.sh_addralign = sec->alignment,
.sh_entsize = sizeof(struct mips32_instruction),
};
}
// symbol table
if (strtbl_write_str(&asm->shstr_tbl, ".symtab", &str_off)) {
free(shdr);
return M_ERROR;
}
asm->symtbl_idx = count;
shdr[count++] = (Elf32_Shdr) {
.sh_name = str_off,
.sh_type = SHT_SYMTAB,
.sh_flags = 0,
.sh_addr = 0,
.sh_offset = 0,
.sh_size = 0,
.sh_link = 1,
.sh_info = 0,
.sh_addralign = 1,
.sh_entsize = sizeof(Elf32_Sym),
};
// string table
if (strtbl_write_str(&asm->shstr_tbl, ".strtab", &str_off)) {
free(shdr);
return M_ERROR;
}
asm->strtbl_idx = count;
shdr[count++] = (Elf32_Shdr) {
.sh_name = str_off,
.sh_type = SHT_STRTAB,
.sh_flags = SHF_STRINGS,
.sh_addr = 0,
.sh_offset = 0,
.sh_size = 0,
.sh_link = 0,
.sh_info = 0,
.sh_addralign = 1,
.sh_entsize = 0,
};
// sh string table
if (strtbl_write_str(&asm->shstr_tbl, ".shstrtab", &str_off)) {
free(shdr);
return M_ERROR;
}
asm->shstrtbl_idx = count;
shdr[count++] = (Elf32_Shdr) {
.sh_name = str_off,
.sh_type = SHT_STRTAB,
.sh_flags = SHF_STRINGS,
.sh_addr = 0,
.sh_offset = 0,
.sh_size = 0,
.sh_link = 0,
.sh_info = 0,
.sh_addralign = 1,
.sh_entsize = 0,
};
for (uint32_t i = 0; i < asm->parser.sec_tbl.count; i++) {
if (asm->meta[i].reltbl == NULL)
continue;
shdr[asm->meta[i].reltbl_idx].sh_link = asm->symtbl_idx;
}
*res = shdr;
*res2 = count;
return M_SUCCESS;
}
static int assemble_file(struct assembler *asm)
{
Elf32_Phdr *phdr;
Elf32_Shdr *shdr;
Elf32_Sym *symtbl;
uint32_t phdr_len;
uint32_t shdr_len;
uint32_t symtbl_len;
if (assemble_symtbl(asm, &symtbl, &symtbl_len))
return M_ERROR;
if (assemble_reltbl(asm, symtbl, symtbl_len)) {
free(symtbl);
return M_ERROR;
};
if (assemble_phdr(asm, &phdr, &phdr_len)) {
free(symtbl);
return M_ERROR;
}
if (assemble_shdr(asm, &shdr, &shdr_len)) {
free(symtbl);
free(phdr);
return M_ERROR;
};
Elf32_Ehdr ehdr = {
.e_ident = {
[EI_MAG0] = ELFMAG0,
[EI_MAG1] = ELFMAG1,
[EI_MAG2] = ELFMAG2,
[EI_MAG3] = ELFMAG3,
[EI_CLASS] = ELFCLASS32,
[EI_DATA] = ELFDATA2LSB,
[EI_VERSION] = EV_CURRENT,
[EI_OSABI] = ELFOSABI_NONE,
[EI_ABIVERSION] = 0x00,
[EI_PAD] = 0x00,
},
.e_type = ET_REL,
.e_machine = EM_MIPS,
.e_version = EV_CURRENT,
.e_entry = 0x00,
.e_phoff = 0x00,
.e_shoff = 0x00,
.e_flags = EF_MIPS_ARCH_32R6,
.e_ehsize = sizeof(Elf32_Ehdr),
.e_phentsize = sizeof(Elf32_Phdr),
.e_phnum = phdr_len,
.e_shentsize = sizeof(Elf32_Shdr),
.e_shnum = shdr_len,
.e_shstrndx = asm->shstrtbl_idx,
};
uint32_t ptr = 0;
// we must now correct offets and sizes inside the ehdr, phdr,
// and shdr
ptr += sizeof(Elf32_Ehdr);
// phdr
ehdr.e_phoff = ptr;
ptr += phdr_len * sizeof(Elf32_Phdr);
// reltbls
for (uint32_t i = 0; i < asm->parser.sec_tbl.count; i++) {
if (asm->meta[i].reltbl == NULL)
continue;
int idx = asm->meta[i].reltbl_idx;
int len = asm->meta[i].reltbl_len;
shdr[idx].sh_offset = ptr;
shdr[idx].sh_size = len * sizeof(Elf32_Rela);
ptr += len * sizeof(Elf32_Rela);
}
// sections
for (uint32_t i = 0; i < asm->parser.sec_tbl.count; i++) {
int idx = asm->meta[i].shdr_idx;
phdr[i].p_offset = ptr;
phdr[i].p_vaddr = ptr;
phdr[i].p_paddr = ptr;
shdr[idx].sh_offset = ptr;
shdr[idx].sh_size = phdr[i].p_filesz;
shdr[idx].sh_addr = phdr[i].p_vaddr;
shdr[idx].sh_addralign = phdr[i].p_align;
ptr += phdr[i].p_filesz;
}
// symtbl
shdr[asm->symtbl_idx].sh_offset = ptr;
shdr[asm->symtbl_idx].sh_link = asm->strtbl_idx;
shdr[asm->symtbl_idx].sh_size = symtbl_len * sizeof(Elf32_Sym);
ptr += symtbl_len * sizeof(Elf32_Sym);
// strtbl
shdr[asm->strtbl_idx].sh_offset = ptr;
shdr[asm->strtbl_idx].sh_size = asm->str_tbl.size;
ptr += asm->str_tbl.size;
// shstrtbl
shdr[asm->shstrtbl_idx].sh_offset = ptr;
shdr[asm->shstrtbl_idx].sh_size = asm->shstr_tbl.size;
ptr += asm->shstr_tbl.size;
// shdr
ehdr.e_shoff = ptr;
FILE *out = fopen("out.o", "w");
// ehdr
fwrite(&ehdr, sizeof(Elf32_Ehdr), 1, out);
// phdr
fwrite(phdr, sizeof(Elf32_Phdr), phdr_len, out);
// reltbls
for (uint32_t i = 0; i < asm->parser.sec_tbl.count; i++) {
if (asm->meta[i].reltbl == NULL)
continue;
void *ptr = asm->meta[i].reltbl;
int len = asm->meta[i].reltbl_len;
asm->meta[i].reltbl = NULL;
fwrite(ptr, sizeof(Elf32_Rela), len, out);
}
// sections
for (uint32_t i = 0; i < asm->parser.sec_tbl.count; i++) {
struct section *sec = &asm->parser.sec_tbl.sections[i];
for (uint32_t j = 0; j < sec->count; j++) {
struct section_entry *entry = &sec->entries[j];
size_t size = entry->size;
fwrite(&entry->data, size, 1, out);
while(size % sec->alignment) {
uint8_t zero = 0;
fwrite(&zero, 1, 1, out);
size++;
}
}
}
// sym tbl
fwrite(symtbl, sizeof(Elf32_Sym), symtbl_len, out);
// str tbl
fwrite(asm->str_tbl.ptr, asm->str_tbl.size, 1, out);
// shstr tbl
fwrite(asm->shstr_tbl.ptr, asm->shstr_tbl.size, 1, out);
// shdr
fwrite(shdr, sizeof(Elf32_Shdr), shdr_len, out);
// cleanip
fclose(out);
free(shdr);
free(phdr);
free(symtbl);
return M_SUCCESS;
}
int assemble_file_mips32(char *path)
{
struct assembler asm;
int res = M_SUCCESS;
current_file = path;
if (assembler_init(&asm, path))
return M_ERROR;
mips32_parser_init(&asm.parser);
if (res == M_SUCCESS)
res = parse_file(&asm);
if (res == M_SUCCESS)
res = assemble_file(&asm);
assembler_free(&asm);
return res;
}