This commit is contained in:
Freya Murphy 2024-09-22 16:02:42 -04:00
parent 6d84ac6def
commit 85471efb4c
Signed by: freya
GPG key ID: 744AB800E383AE52
19 changed files with 1092 additions and 47 deletions

View file

@ -3,6 +3,7 @@
#define __MERROR_H__ #define __MERROR_H__
#include <errno.h> #include <errno.h>
#include <string.h>
/* Error codes /* Error codes
*/ */

View file

@ -13,7 +13,7 @@ H_SRC = $(shell find $(SRC) $(INCLUDE) -type f -name "*.h")
C_SRC = $(shell find $(SRC) -type f -name "*.c") C_SRC = $(shell find $(SRC) -type f -name "*.c")
C_OBJ = $(patsubst %.c,$(BIN)/%.o,$(C_SRC)) C_OBJ = $(patsubst %.c,$(BIN)/%.o,$(C_SRC))
.PHONY: clean build run .PHONY: clean build run test
build: $(BIN)/$(OUT) build: $(BIN)/$(OUT)
@ -27,7 +27,8 @@ run: build
test: test:
make -C ../test $(OUT) make -C ../test $(OUT)
mkdir -p ../fuzz mkdir -p ../fuzz
afl-fuzz -i ../test/$(OUT) -o ../fuzz -- $(BIN)/$(OUT) @@ rm -fr ../fuzz/$(OUT)
afl-fuzz -i ../test/$(OUT) -o ../fuzz -M $(OUT) -- $(BIN)/$(OUT) @@
$(C_OBJ): $(BIN)/%.o : %.c $(C_OBJ): $(BIN)/%.o : %.c
@mkdir -p $(@D) @mkdir -p $(@D)

View file

@ -315,7 +315,7 @@ static int assemble_phdr(struct assembler *assembler, Elf32_Phdr **res,
Elf32_Phdr *phdr = malloc(sizeof(Elf32_Phdr) * Elf32_Phdr *phdr = malloc(sizeof(Elf32_Phdr) *
assembler->sectab.len); assembler->sectab.len);
if (phdr == NULL) { if (phdr == NULL) {
ERROR("cannot alloc"); PERROR("cannot alloc");
return M_ERROR;; return M_ERROR;;
} }
@ -354,6 +354,11 @@ static int assemble_shdr(struct assembler *assembler, Elf32_Shdr **res,
Elf32_Shdr *shdr = malloc(sizeof(Elf32_Shdr) * max_entries); Elf32_Shdr *shdr = malloc(sizeof(Elf32_Shdr) * max_entries);
if (shdr == NULL) {
PERROR("cannot alloc");
return M_ERROR;
}
size_t str_off; size_t str_off;
uint32_t count = 0; uint32_t count = 0;
@ -593,7 +598,7 @@ static int write_file(struct assembler *assembler, Elf32_Ehdr *ehdr,
if (out == NULL) if (out == NULL)
{ {
ERROR("cannot write '%s'", path); PERROR("cannot write '%s'", path);
return M_ERROR; return M_ERROR;
} }

View file

@ -309,7 +309,7 @@ int lexer_init(const char *path, struct lexer *lexer)
{ {
FILE *file = fopen(path, "r"); FILE *file = fopen(path, "r");
if (file == NULL) { if (file == NULL) {
ERROR("cannot read '%s'", path); PERROR("cannot read '%s'", path);
return M_ERROR; return M_ERROR;
} }
lexer->file = file; lexer->file = file;

View file

@ -1,6 +1,5 @@
#include <mlimits.h> #include <mlimits.h>
#include <merror.h> #include <merror.h>
#include <netinet/in.h>
#include <stdint.h> #include <stdint.h>
#include <stdio.h> #include <stdio.h>
#include <string.h> #include <string.h>
@ -10,6 +9,9 @@
#include "lex.h" #include "lex.h"
#include "mips.h" #include "mips.h"
#define B16(x) (x)
#define B32(x) (x)
static int next_token(struct parser *parser, struct token *tok) static int next_token(struct parser *parser, struct token *tok)
{ {
if (parser->peek.type != TOK_EOF) { if (parser->peek.type != TOK_EOF) {
@ -475,7 +477,7 @@ off:
if (assert_token(parser, TOK_NUMBER, &token)) if (assert_token(parser, TOK_NUMBER, &token))
return M_ERROR; return M_ERROR;
fi->data.offset = htons(token.number); fi->data.immd = B16(token.number);
if (peek_token(parser, &token)) if (peek_token(parser, &token))
return M_ERROR; return M_ERROR;
@ -618,7 +620,7 @@ static int parse_instruction_i(struct parser *parser,
if (token.number >= MAX16) if (token.number >= MAX16)
return M_ERROR; return M_ERROR;
ins->data.immd = htons(token.number); ins->data.immd = B16(token.number);
return M_SUCCESS; return M_SUCCESS;
} }
@ -634,12 +636,12 @@ static int parse_instruction_offset(struct parser *parser,
case MAX26: case MAX26:
if (get_offset_26(parser, &n, ref)) if (get_offset_26(parser, &n, ref))
return M_ERROR; return M_ERROR;
ins->data.offs26 = htonl(n); ins->data.offs26 = B32(n);
break; break;
case MAX16: case MAX16:
if (get_offset(parser, &n, ref)) if (get_offset(parser, &n, ref))
return M_ERROR; return M_ERROR;
ins->data.offset = htons(n); ins->data.offset = B16(n);
break; break;
default: default:
return M_ERROR; return M_ERROR;
@ -682,7 +684,7 @@ static int parse_instruction_branch_equal(struct parser *parser,
int32_t off; int32_t off;
if (get_offset(parser, &off, ref)) if (get_offset(parser, &off, ref))
return M_ERROR; return M_ERROR;
ins->data.offset = htons(off); ins->data.offset = B16(off);
return M_SUCCESS; return M_SUCCESS;
} }
@ -703,7 +705,7 @@ static int parse_instruction_branch(struct parser *parser,
if (get_offset(parser, &n, ref)) if (get_offset(parser, &n, ref))
return M_ERROR; return M_ERROR;
ins->data.offset = htons(n); ins->data.offset = B16(n);
return M_SUCCESS; return M_SUCCESS;
} }
@ -742,7 +744,7 @@ static int parse_instruction_sli(struct parser *parser,
if (assert_token(parser, TOK_NUMBER, &token) || token.number > MAX16) if (assert_token(parser, TOK_NUMBER, &token) || token.number > MAX16)
return M_ERROR; return M_ERROR;
ins->data.immd = htons(token.number); ins->data.immd = B16(token.number);
return M_SUCCESS; return M_SUCCESS;
} }
@ -818,7 +820,7 @@ static int parse_pseudo_li(struct parser *parser, struct ins_expr *expr)
expr->ins[0] = mips_instructions[MIPS_INS_ORI]; expr->ins[0] = mips_instructions[MIPS_INS_ORI];
expr->ins[0].data.rt = reg; expr->ins[0].data.rt = reg;
expr->ins[0].data.rs = MIPS_REG_ZERO; expr->ins[0].data.rs = MIPS_REG_ZERO;
expr->ins[0].data.immd = htons(immd); expr->ins[0].data.immd = B16(immd);
expr->ref[0].type = R_MIPS_NONE; expr->ref[0].type = R_MIPS_NONE;
return M_SUCCESS; return M_SUCCESS;
@ -859,11 +861,11 @@ static int parse_pseudo_la(struct parser *parser, struct ins_expr *expr)
expr->ins_len = 2; expr->ins_len = 2;
expr->ins[0] = mips_instructions[MIPS_INS_LUI]; expr->ins[0] = mips_instructions[MIPS_INS_LUI];
expr->ins[0].data.rt = reg; expr->ins[0].data.rt = reg;
expr->ins[0].data.immd = htons(hi); expr->ins[0].data.immd = B16(hi);
expr->ins[1] = mips_instructions[MIPS_INS_ORI]; expr->ins[1] = mips_instructions[MIPS_INS_ORI];
expr->ins[1].data.rt = reg; expr->ins[1].data.rt = reg;
expr->ins[1].data.rs = MIPS_REG_ZERO; expr->ins[1].data.rs = MIPS_REG_ZERO;
expr->ins[1].data.immd = htons(lo); expr->ins[1].data.immd = B16(lo);
return M_SUCCESS; return M_SUCCESS;
} }

View file

@ -13,7 +13,7 @@ int reltab_init(struct relocation_table *reltab)
reltab->data = malloc(sizeof(Elf32_Rela) * RELTAB_INIT_LEN); reltab->data = malloc(sizeof(Elf32_Rela) * RELTAB_INIT_LEN);
if (reltab->data == NULL) { if (reltab->data == NULL) {
ERROR("cannot alloc"); PERROR("cannot alloc");
return M_ERROR; return M_ERROR;
} }
@ -33,7 +33,7 @@ int reltab_push(struct relocation_table *reltab, const Elf32_Rela rel)
* reltab->size); * reltab->size);
if (reltab->data == NULL) { if (reltab->data == NULL) {
ERROR("cannot realloc"); PERROR("cannot realloc");
return M_ERROR; return M_ERROR;
} }
} }

View file

@ -16,7 +16,7 @@ int sectab_init(struct section_table *sectab)
sectab->sections = malloc(sizeof(struct section) * SECTBL_INIT_LEN); sectab->sections = malloc(sizeof(struct section) * SECTBL_INIT_LEN);
if (sectab->sections == NULL) { if (sectab->sections == NULL) {
ERROR("cannot alloc"); PERROR("cannot alloc");
return M_ERROR; return M_ERROR;
} }
@ -59,7 +59,7 @@ int sectab_alloc(struct section_table *sectab, struct section **res,
sizeof(struct section) * sectab->size); sizeof(struct section) * sectab->size);
if (sectab->sections == NULL) { if (sectab->sections == NULL) {
ERROR("cannot realloc"); PERROR("cannot realloc");
return M_ERROR; return M_ERROR;
} }
} }
@ -94,7 +94,7 @@ int sectab_alloc(struct section_table *sectab, struct section **res,
} }
if (sec->entries == NULL) { if (sec->entries == NULL) {
ERROR("cannot alloc"); PERROR("cannot alloc");
return M_ERROR; return M_ERROR;
} }
@ -127,7 +127,7 @@ int sec_push(struct section *section, struct section_entry entry)
sizeof(struct section_entry) * section->size); sizeof(struct section_entry) * section->size);
if (new == NULL) { if (new == NULL) {
ERROR("cannot realloc"); PERROR("cannot realloc");
return M_ERROR; return M_ERROR;
} }

View file

@ -41,7 +41,7 @@ int strtab_init(struct str_table *strtab)
strtab->size = 1; strtab->size = 1;
strtab->ptr = malloc(1); strtab->ptr = malloc(1);
if (strtab->ptr == NULL) { if (strtab->ptr == NULL) {
ERROR("cannot alloc"); PERROR("cannot alloc");
return M_ERROR; return M_ERROR;
} }
*strtab->ptr = '\0'; *strtab->ptr = '\0';

View file

@ -18,7 +18,7 @@ int symtab_init(struct symbol_table *symtab)
symtab->sections = malloc(sizeof(ssize_t) * SYMTBL_INIT_LEN); symtab->sections = malloc(sizeof(ssize_t) * SYMTBL_INIT_LEN);
if (symtab->symbols == NULL || symtab->sections == NULL) { if (symtab->symbols == NULL || symtab->sections == NULL) {
ERROR("cannot alloc"); PERROR("cannot alloc");
return M_ERROR; return M_ERROR;
} }
@ -44,7 +44,7 @@ int symtab_push(struct symbol_table *symtab, Elf32_Sym sym, ssize_t sec_idx)
symtab->sections = realloc(symtab->sections, symtab->sections = realloc(symtab->sections,
sizeof(ssize_t) * symtab->size); sizeof(ssize_t) * symtab->size);
if (symtab->symbols == NULL || symtab->sections == NULL) { if (symtab->symbols == NULL || symtab->sections == NULL) {
ERROR("cannot realloc"); PERROR("cannot realloc");
return M_ERROR; return M_ERROR;
} }
} }

View file

@ -1,9 +1,17 @@
#include <elf.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
#include <merror.h> #include <merror.h>
#include <string.h> #include <string.h>
#include <sys/stat.h> #include <sys/stat.h>
#include <melf.h>
#include "link.h" #include "link.h"
#include "mips.h"
#define SEC_ALIGN 0x1000
static int load_objects(struct linker *linker) static int load_objects(struct linker *linker)
{ {
@ -12,7 +20,7 @@ static int load_objects(struct linker *linker)
linker->obj_len = 0; linker->obj_len = 0;
if (linker->objects == NULL) { if (linker->objects == NULL) {
ERROR("cannot alloc"); PERROR("cannot alloc");
return M_ERROR; return M_ERROR;
} }
@ -40,6 +48,627 @@ skip_obj:
return M_SUCCESS; return M_SUCCESS;
} }
/**
* Relocates all segments with the given name
* (since they need to be next to eachother)
*/
static int relocate_segment_name(struct linker *linker, const char *name)
{
for (size_t i = 0; i < linker->obj_len; i++) {
struct object *obj = &linker->objects[i];
for (size_t j = 0; j < obj->segment_len; j++) {
struct segment *seg = &obj->segments[j];
// check if the segment has already been relocated
if (seg->new_vaddr != 0)
continue;
// make sure the segments name matches what
// we are looking for
if (strcmp(seg->name, name) != 0)
continue;
if (ADDR_CHK(linker->off, seg->size, UINT32_MAX)) {
ERROR("linker offset overflow");
return M_ERROR;
}
// is the segment a TEXT type or DATA type??
if (B32(seg->phdr->p_flags) & PF_X) {
// TEXT
if (ADDR_CHK(linker->text_vaddr, seg->size,
DATA_VADDR_MIN)) {
ERROR("linker text vaddr overflow");
return M_ERROR;
}
seg->new_off = linker->off;
seg->new_vaddr = linker->text_vaddr;
linker->off += seg->size;
linker->text_vaddr += seg->size;
} else {
// DATA
if (ADDR_CHK(linker->data_vaddr, seg->size,
UINT32_MAX)) {
ERROR("linker data vaddr overflow");
return M_ERROR;
}
seg->new_off = linker->off;
seg->new_vaddr = linker->data_vaddr;
linker->off += seg->size;
linker->data_vaddr += seg->size;
}
// if this is an existing segment, append this
// part
struct segment_table_entry *ent;
if (segtab_get(&linker->segments, &ent, name) ==
M_SUCCESS) {
if (segtab_ent_push(ent, seg))
return M_ERROR;
} else {
// else create a new segment
if (segtab_push(&linker->segments, NULL, seg))
return M_ERROR;
}
}
}
return M_SUCCESS;
}
static int relocate_segments(struct linker *linker)
{
for (size_t i = 0; i < linker->obj_len; i++) {
struct object *obj = &linker->objects[i];
for (size_t j = 0; j < obj->segment_len; j++) {
struct segment *seg = &obj->segments[j];
// check if the segment has already been relocated
if (seg->new_vaddr != 0)
continue;
if(relocate_segment_name(linker, seg->name))
return M_ERROR;
}
}
return M_SUCCESS;
}
static int relocate_symbol(struct linker *linker, struct object *obj,
struct symbol_table *symtab, const Elf32_Sym *sym)
{
size_t shndx = B16(sym->st_shndx);
if (shndx == 0)
return M_SUCCESS; // ignore this symbol
// find the given section
const char *name = symtab->strtab->data + B32(sym->st_name);
if (shndx >= obj->shdr_len) {
ERROR("shdr entry [%d] name out of bounds", shndx);
return M_ERROR;
}
if (B32(sym->st_name) >= symtab->strtab->len) {
ERROR("symbol name out of bounds");
return M_ERROR;
}
Elf32_Shdr const *shdr = &obj->shdr[shndx];
struct segment *sec = NULL;
for (size_t i = 0; i < obj->phdr_len; i++) {
Elf32_Phdr *temp = &obj->phdr[i];
if (shdr->sh_offset == temp->p_offset) {
sec = &obj->segments[i];
break;
}
}
if (sec == NULL) {
ERROR("could not locate segment for symbol '%s'", name);
return M_ERROR;
}
struct segment_table_entry *ent = NULL;
if (segtab_get(&linker->segments, &ent, sec->name)) {
ERROR("could not locate segment for symbol '%s'", name);
return M_ERROR;
}
// segments start at shindx 1
ptrdiff_t new_shndx = (ent - linker->segments.entries) + 1;
size_t str_off = 0;
if (strtab_push(linker->symtab.strtab, name, &str_off))
return M_ERROR;
int32_t off = sec->new_vaddr + B32(sym->st_value);
Elf32_Sym new = *sym;
new.st_name = B32(str_off);
new.st_value = B32(off);
new.st_shndx = B16(new_shndx);
new.st_size = 0;
if (symtab_get(&linker->symtab, NULL, name) == M_SUCCESS) {
ERROR("cannot link doubly defiend symbol '%s'", name);
return M_ERROR;
}
if (symtab_push(&linker->symtab, &new))
return M_ERROR;
return M_SUCCESS;
}
static int relocate_symbols(struct linker *linker)
{
for (size_t i = 0; i < linker->obj_len; i++) {
struct object *obj = &linker->objects[i];
for (size_t j = 0; j < obj->shdr_len; j++) {
struct symbol_table *symtab = &obj->symtabs[j];
if (symtab->len < 1)
continue;
for (size_t k = 0; k < symtab->len; k++) {
const Elf32_Sym *sym = &symtab->syms[k];
if (relocate_symbol(linker, obj, symtab, sym))
return M_ERROR;
}
}
}
return M_SUCCESS;
}
static int assemble_phdr(struct linker *linker)
{
Elf32_Phdr *phdr = malloc(sizeof(Elf32_Phdr) * linker->segments.len);
if (phdr == NULL) {
PERROR("cannot alloc");
return M_ERROR;
}
for (uint32_t i = 0; i < linker->segments.len; i++) {
Elf32_Phdr *hdr = &phdr[i];
struct segment_table_entry *ent = &linker->segments.entries[i];
size_t size = segtab_ent_size(ent);
hdr->p_type = B32(PT_LOAD);
hdr->p_flags = B32(
(ent->parts[0]->execute << 0) |
(ent->parts[0]->write << 1) |
(ent->parts[0]->read << 2));
hdr->p_offset = B32(ent->off);
hdr->p_vaddr = B32(ent->vaddr);
hdr->p_paddr = B32(ent->vaddr);
hdr->p_filesz = B32(size);
hdr->p_memsz = B32(size);
hdr->p_align = B32(SEC_ALIGN);
}
linker->phdr = phdr;
linker->phdr_len = linker->segments.len;
return M_SUCCESS;
}
static int assemble_shdr(struct linker *linker)
{
uint32_t max_entries = 0;
max_entries += 1; // null
max_entries += 1; // symtab
max_entries += 1; // strtab
max_entries += 1; // shstrtab
max_entries += linker->segments.len; // segments
Elf32_Shdr *shdr = malloc(sizeof(Elf32_Shdr) * max_entries);
if (shdr == NULL) {
PERROR("cannot alloc");
return M_ERROR;
}
linker->shdr = shdr;
size_t str_off;
uint32_t count = 0;
// null
shdr[count++] = (Elf32_Shdr) {0};
// segments
for (uint32_t i = 0; i < linker->segments.len; i++) {
struct segment_table_entry *ent = &linker->segments.entries[i];
if (strtab_push(&linker->shstrtab, ent->name, &str_off))
return M_ERROR;
shdr[count++] = (Elf32_Shdr) {
.sh_name = B32(str_off),
.sh_type = B32(SHT_PROGBITS),
.sh_flags = B32(
(ent->parts[0]->write << 0) |
(ent->parts[0]->execute << 2) |
SHF_ALLOC),
.sh_addr = B32(ent->vaddr),
.sh_offset = B32(ent->off),
.sh_size = B32(segtab_ent_size(ent)),
.sh_link = 0,
.sh_info = 0,
.sh_addralign = B32(ent->parts[0]->align),
.sh_entsize = 0,
};
}
// symbol table
if (strtab_push(&linker->shstrtab, ".symtab", &str_off))
return M_ERROR;
linker->symtab_shidx = count;
shdr[count++] = (Elf32_Shdr) {
.sh_name = B32(str_off),
.sh_type = B32(SHT_SYMTAB),
.sh_flags = 0,
.sh_addr = 0,
.sh_offset = 0,
.sh_size = 0,
.sh_link = 0,
.sh_info = 0,
.sh_addralign = B32(1),
.sh_entsize = B32(sizeof(Elf32_Sym)),
};
// string table
if (strtab_push(&linker->shstrtab, ".strtab", &str_off))
return M_ERROR;
linker->strtab_shidx = count;
shdr[count++] = (Elf32_Shdr) {
.sh_name = B32(str_off),
.sh_type = B32(SHT_STRTAB),
.sh_flags = B32(SHF_STRINGS),
.sh_addr = 0,
.sh_offset = 0,
.sh_size = 0,
.sh_link = 0,
.sh_info = 0,
.sh_addralign = B32(1),
.sh_entsize = 0,
};
// shstring table
if (strtab_push(&linker->shstrtab, ".shstrtab", &str_off))
return M_ERROR;
linker->shstrtab_shidx = count;
shdr[count++] = (Elf32_Shdr) {
.sh_name = B32(str_off),
.sh_type = B32(SHT_STRTAB),
.sh_flags = B32(SHF_STRINGS),
.sh_addr = 0,
.sh_offset = 0,
.sh_size = 0,
.sh_link = 0,
.sh_info = 0,
.sh_addralign = B32(1),
.sh_entsize = 0,
};
linker->shdr_len = count;
return M_SUCCESS;
}
static int relocate_instruction_rela(struct linker *linker,
struct segment *seg,
Elf32_Rela *rel)
{
/// get start of the segment part in bytes and the byte offset
/// of this relocation in that segment part
uint32_t off = B32(rel->r_offset);
if (off > seg->size) {
ERROR("relocation in segment '%s' out of bounds", seg->name);
return M_ERROR;
}
if (B32(rel->r_info) == 0) {
WARNING("skiping empty relocation entry");
return M_SUCCESS;
}
/// read the relocation entry
uint8_t idx = B32(rel->r_info) >> 8;
uint8_t typ = B32(rel->r_info) & 0xFF;
int32_t add = B32(rel->r_addend);
/// read the symbol from the relocation
struct symbol_table *symtab = seg->reltab.symtab;
if (idx >= symtab->len) {
ERROR("relocation in segment '%s', symbol index [%d] out of "
"bounds", seg->name, idx);
return M_ERROR;
}
Elf32_Sym *sym = &symtab->syms[idx];
const char *symname = symtab->strtab->data + B32(sym->st_name);
/// get the section header that the symbol is related to
Elf32_Shdr *shdr = NULL;
if (B16(sym->st_shndx) >= seg->obj->shdr_len) {
ERROR("shndx index [%d] out of bounds", B16(sym->st_shndx));
return M_ERROR;
}
shdr = &seg->obj->shdr[B16(sym->st_shndx)];
/// get the segment that the symbol is in
struct segment_table_entry *ent;
const char *segname = seg->obj->shstrtab->data + B32(shdr->sh_name);
if (segtab_get(&linker->segments, &ent, segname)) {
ERROR("could not locate segment for relocation");
return M_ERROR;
}
uint32_t sym_vaddr = B32(sym->st_value) + ent->vaddr;
uint32_t *ins_raw = (uint32_t *) &seg->bytes[off];
union mips_instruction_data ins;
ins.raw = B32(*ins_raw);
uint32_t ins_vaddr = seg->new_vaddr + off;
uint32_t vaddr_abs = sym_vaddr + add;
int32_t vaddr_rel = (vaddr_abs - ins_vaddr - 4) >> 2;
bool warn = false;
switch (typ) {
case R_MIPS_16:
// 16bit absolute
if (vaddr_abs > UINT16_MAX)
warn = true;
ins.immd = (uint16_t)vaddr_abs;
break;
case R_MIPS_PC16:
// 16bit relative shifted
if (vaddr_rel > INT16_MAX || vaddr_rel < INT16_MIN)
warn = true;
ins.offset = vaddr_rel;
break;
case R_MIPS_26:
// 26bit absolute shifted
if (vaddr_abs >= (1 << 25))
warn = true;
ins.target = (vaddr_abs & 0x0FFFFFFF) >> 2;
break;
case R_MIPS_PC26_S2:
// 26bit relative shifted
if (vaddr_rel >= (1 << 24) || -vaddr_rel > (1 << 24))
warn = true;
ins.offs26 = vaddr_rel;
break;
case R_MIPS_LO16:
// lo 16bit absolute
ins.immd = (uint16_t)(vaddr_abs & 0xFFFF);
break;
case R_MIPS_HI16:
// hi 16bit absolute
ins.immd = (uint16_t)(vaddr_abs >> 16);
break;
default:
ERROR("do not know how do handle relocation type [%d]", typ);
return M_ERROR;
}
*ins_raw = B32(ins.raw);
if (warn)
WARNING("truncating relocation for symbol '%s'", symname);
return M_SUCCESS;
}
static int relocate_instruction_rel(struct linker *linker,
struct segment *seg,
Elf32_Rel *rel)
{
Elf32_Rela temp;
temp.r_info = rel->r_info;
temp.r_offset = rel->r_offset;
temp.r_addend = 0;
return relocate_instruction_rela(linker, seg, &temp);
}
static int relocate_segment_instructions(struct linker *linker,
struct segment *seg)
{
for (uint32_t i = 0; i < seg->reltab.len; i++) {
int res = M_SUCCESS;
if (seg->reltab.type == SHT_RELA)
res = relocate_instruction_rela(linker, seg,
&seg->reltab.rela[i]);
else if (seg->reltab.type == SHT_REL)
res = relocate_instruction_rel(linker, seg,
&seg->reltab.rel[i]);
else {
ERROR("unknown reltab type");
return M_ERROR;
}
if (res)
return M_ERROR;
}
return M_SUCCESS;
}
static int relocate_instructions(struct linker *linker)
{
for (uint32_t i = 0; i < linker->segments.len; i++) {
struct segment_table_entry *ent = &linker->segments.entries[i];
for (uint32_t j = 0; j < ent->len; j++) {
struct segment *seg = ent->parts[j];
if (relocate_segment_instructions(linker, seg))
return M_ERROR;
}
}
return M_SUCCESS;
}
static void update_offsets(struct linker *linker)
{
uint32_t ptr = 0;
// we must now correct offsets and sizes in side the ehdr, phdr,
// and shdr
ptr += sizeof(Elf32_Ehdr);
// phdr
linker->ehdr.e_phoff = B32(ptr);
ptr += linker->phdr_len * sizeof(Elf32_Phdr);
// section padding
{
uint32_t mod = ptr % SEC_ALIGN;
if (mod != 0)
linker->secalign = (SEC_ALIGN - mod);
else
linker->secalign = 0;
ptr += linker->secalign;
}
// sections
for (uint32_t i = 0; i < linker->segments.len; i++) {
struct segment_table_entry *ent = &linker->segments.entries[i];
uint32_t idx = i + 1;
uint32_t size = segtab_ent_size(ent);
linker->phdr[i].p_offset = B32(ptr);
linker->shdr[idx].sh_offset = linker->phdr[i].p_offset;
ptr += size;
}
// symtab
Elf32_Shdr *symtab = &linker->shdr[linker->symtab_shidx];
symtab->sh_offset = B32(ptr);
symtab->sh_link = B32(linker->strtab_shidx);
symtab->sh_size = B32(linker->symtab.len * sizeof(Elf32_Sym));
ptr += B32(symtab->sh_size);
// strtab
Elf32_Shdr *strtab = &linker->shdr[linker->strtab_shidx];
strtab->sh_offset = B32(ptr);
strtab->sh_size = B32(linker->strtab.len);
ptr += linker->strtab.len;
// shstrtab
Elf32_Shdr *shstrtab = &linker->shdr[linker->shstrtab_shidx];
shstrtab->sh_offset = B32(ptr);
shstrtab->sh_size = B32(linker->shstrtab.len);
ptr += linker->shstrtab.len;
// shdr
linker->ehdr.e_shoff = B32(ptr);
}
static int write_file(struct linker *linker)
{
extern char *current_file;
current_file = linker->args->out_file;
FILE *out = fopen(linker->args->out_file, "w");
if (out == NULL) {
PERROR("cannot write");
return M_ERROR;
}
int res = 0;
// ehdr
res |= fwrite(&linker->ehdr, sizeof(Elf32_Ehdr), 1, out);
// phdr
res |= fwrite(linker->phdr, sizeof(Elf32_Phdr), linker->phdr_len, out);
// section padding
for (uint32_t i = 0; i < linker->secalign; i++) {
uint8_t zero = 0;
res |= fwrite(&zero, 1, 1, out);
}
// sections
for (uint32_t i = 0; i < linker->segments.len; i++) {
struct segment_table_entry *ent = &linker->segments.entries[i];
for (uint32_t j = 0; j < ent->len; j++) {
struct segment *seg = ent->parts[j];
res |= fwrite(seg->bytes, 1, seg->size, out);
}
}
// sym tbl
res |= fwrite(linker->symtab.syms, sizeof(Elf32_Sym), linker->symtab.len, out);
// str tbl
res |= fwrite(linker->strtab.data, 1, linker->strtab.len, out);
// shstr tbl
res |= fwrite(linker->shstrtab.data, 1, linker->shstrtab.len, out);
// shdr
res |= fwrite(linker->shdr, sizeof(Elf32_Shdr), linker->shdr_len, out);
if (res < 0) {
ERROR("cannot write data");
return M_ERROR;
}
fclose(out);
return M_SUCCESS;
}
static int link_executable(struct linker *linker)
{
Elf32_Ehdr *ehdr = &linker->ehdr;
*ehdr = MIPS_ELF_EHDR;
if (assemble_phdr(linker))
return M_ERROR;
if (assemble_shdr(linker))
return M_ERROR;
ehdr->e_type = B16(ET_EXEC);
ehdr->e_phnum = B16(linker->phdr_len);
ehdr->e_shnum = B16(linker->shdr_len);
ehdr->e_shstrndx = B16(linker->shstrtab_shidx);
update_offsets(linker);
if (write_file(linker))
return M_ERROR;
return M_SUCCESS;
}
static int linker_init(struct linker *linker, struct linker_arguments *args)
{
linker->args = args;
linker->off = 0;
linker->text_vaddr = TEXT_VADDR_MIN;
linker->data_vaddr = DATA_VADDR_MIN;
linker->objects = NULL;
linker->segments.size = 0;
linker->symtab.syms = NULL;
linker->shstrtab.data = NULL;
linker->strtab.data = NULL;
linker->shdr = NULL;
linker->phdr = NULL;
if (segtab_init(&linker->segments))
return M_ERROR;
if (strtab_init(&linker->shstrtab))
return M_ERROR;
if (strtab_init(&linker->strtab))
return M_ERROR;
if (symtab_init(&linker->symtab))
return M_ERROR;
linker->symtab.strtab = &linker->strtab;
return M_SUCCESS;
}
static void linker_free(struct linker *linker) static void linker_free(struct linker *linker)
{ {
if (linker->objects != NULL) { if (linker->objects != NULL) {
@ -47,15 +676,32 @@ static void linker_free(struct linker *linker)
object_free(&linker->objects[i]); object_free(&linker->objects[i]);
free(linker->objects); free(linker->objects);
} }
if (linker->shdr != NULL)
free(linker->shdr);
if (linker->phdr != NULL)
free(linker->phdr);
segtab_free(&linker->segments);
strtab_free(&linker->shstrtab);
strtab_free(&linker->strtab);
symtab_free(&linker->symtab);
} }
int link_files(struct linker_arguments args) { int link_files(struct linker_arguments args) {
struct linker linker; struct linker linker;
linker.args = &args;
int res = M_SUCCESS;
int res = M_SUCCESS;
if (res == M_SUCCESS)
res = linker_init(&linker, &args);
if (res == M_SUCCESS) if (res == M_SUCCESS)
res = load_objects(&linker); res = load_objects(&linker);
if (res == M_SUCCESS)
res = relocate_segments(&linker);
if (res == M_SUCCESS)
res = relocate_symbols(&linker);
if (res == M_SUCCESS)
res = relocate_instructions(&linker);
if (res == M_SUCCESS)
res = link_executable(&linker);
linker_free(&linker); linker_free(&linker);
return res; return res;

View file

@ -9,7 +9,6 @@
#include <merror.h> #include <merror.h>
#include <stdint.h> #include <stdint.h>
#include <elf.h> #include <elf.h>
#include <stdio.h>
// when mapping porinters, we need to bounds check to // when mapping porinters, we need to bounds check to
@ -21,6 +20,15 @@
#define BOUND_CHK(obj, len, off) \ #define BOUND_CHK(obj, len, off) \
(off > UINT32_MAX - len || off + len > obj->mapped_size) (off > UINT32_MAX - len || off + len > obj->mapped_size)
// when relocating segments, we need to bounds check to
// make sure it wont overflow the addresses past the 32bit
// ELF file
#define ADDR_CHK(lnk_f, seg_f, max) \
((lnk_f) > max - (seg_f) || (lnk_f) + (seg_f) > max)
// start addresses for each tyoe of segment
#define TEXT_VADDR_MIN 0x00400000
#define DATA_VADDR_MIN 0x10000000
// pre define // pre define
struct linker; struct linker;
@ -51,6 +59,12 @@ struct string_table {
size_t len; size_t len;
}; };
int strtab_init(struct string_table *strtab);
void strtab_free(struct string_table *strtab);
int strtab_push(struct string_table *strtab, const char *str, size_t *res);
int strtab_get(struct string_table *strtab, const char *str, size_t *res);
/// ///
/// symbol table /// symbol table
/// ///
@ -59,14 +73,42 @@ struct symbol_table {
struct string_table *strtab; struct string_table *strtab;
Elf32_Sym *syms; Elf32_Sym *syms;
size_t len; size_t len;
size_t size;
}; };
int symtab_init(struct symbol_table *symtab);
void symtab_free(struct symbol_table *symtab);
int symtab_push(struct symbol_table *symtab, const Elf32_Sym *sym);
int symtab_get(struct symbol_table *symtab, Elf32_Sym **sym, const char *name);
/// ///
/// segment /// segment
/// ///
/* a loadable program segment */ /* a loadable program segment */
struct segment { struct segment {
// segment data
char *name;
unsigned char *bytes;
// current loc
uint32_t off;
uint32_t vaddr;
// new loc
uint32_t new_off;
uint32_t new_vaddr;
// meta
bool read;
bool write;
bool execute;
uint32_t align;
// size
uint32_t size;
// phdr // phdr
Elf32_Phdr *phdr; Elf32_Phdr *phdr;
uint32_t phdr_idx; uint32_t phdr_idx;
@ -75,9 +117,8 @@ struct segment {
Elf32_Shdr *shdr; Elf32_Shdr *shdr;
uint32_t shdr_idx; uint32_t shdr_idx;
// segment data // object im related to
char *name; struct object *obj;
unsigned char *bytes;
// relocation table // relocation table
struct relocation_table reltab; struct relocation_table reltab;
@ -85,6 +126,46 @@ struct segment {
int segment_load(struct object *object, struct segment *segment, size_t index); int segment_load(struct object *object, struct segment *segment, size_t index);
///
/// segment table
///
struct segment_table_entry {
char *name;
uint32_t len;
uint32_t size;
uint32_t off;
uint32_t vaddr;
// weak segment pointers. we do not own these!!!
struct segment **parts;
};
int segtab_ent_init(struct segment_table_entry *ent);
void segtab_ent_free(struct segment_table_entry *ent);
int segtab_ent_push(struct segment_table_entry *ent, struct segment *seg);
uint32_t segtab_ent_size(struct segment_table_entry *ent);
// holds each segment by name
// and all the segment parts from each of the
// object files
struct segment_table {
uint32_t len;
uint32_t size;
struct segment_table_entry *entries;
};
int segtab_init(struct segment_table *segtab);
void segtab_free(struct segment_table *segtab);
/* create a new entry with <seg> as its first segment part */
int segtab_push(struct segment_table *segtab, struct segment_table_entry **ent,
struct segment *seg);
/* find a segment table entry with a given name */
int segtab_get(struct segment_table *segtab, struct segment_table_entry **ent,
const char *name);
/// ///
/// object file /// object file
/// ///
@ -136,6 +217,34 @@ struct linker {
struct object *objects; struct object *objects;
struct linker_arguments *args; struct linker_arguments *args;
// current pointers to relocate
// sections
uint32_t off;
uint32_t text_vaddr;
uint32_t data_vaddr;
// elf tables
struct string_table shstrtab;
struct string_table strtab;
struct symbol_table symtab;
// output elf
Elf32_Ehdr ehdr;
Elf32_Phdr *phdr;
uint32_t phdr_len;
Elf32_Shdr *shdr;
uint32_t shdr_len;
uint32_t symtab_shidx;
uint32_t strtab_shidx;
uint32_t shstrtab_shidx;
// section alignment after phdr bytes
uint32_t secalign;
// all segments
struct segment_table segments;
}; };
/* defines arguments to the linker */ /* defines arguments to the linker */

View file

@ -171,6 +171,7 @@ static int load_symtabs(struct object *object)
if (B32(hdr->sh_type) != SHT_SYMTAB) { if (B32(hdr->sh_type) != SHT_SYMTAB) {
symtab->len = 0; symtab->len = 0;
symtab->size = 0;
continue; continue;
} }
@ -190,7 +191,8 @@ static int load_symtabs(struct object *object)
} }
symtab->strtab = strtab; symtab->strtab = strtab;
symtab->len = len; symtab->len = len / sizeof(Elf32_Sym);
symtab->size = len / sizeof(Elf32_Sym);
symtab->syms = (Elf32_Sym *) (object->mapped + off); symtab->syms = (Elf32_Sym *) (object->mapped + off);
if (BOUND_CHK(object, len, off)) { if (BOUND_CHK(object, len, off)) {
@ -263,8 +265,8 @@ static int map_file(struct object *obj, char *path)
} }
obj->mapped_size = st.st_size; obj->mapped_size = st.st_size;
obj->mapped = mmap(NULL, st.st_size, PROT_READ, MAP_SHARED, obj->mapped = mmap(NULL, st.st_size, PROT_READ | PROT_WRITE,
obj->fd, 0); MAP_PRIVATE, obj->fd, 0);
if (obj->mapped == MAP_FAILED) { if (obj->mapped == MAP_FAILED) {
PERROR("cannot map"); PERROR("cannot map");

View file

@ -82,6 +82,13 @@ static int load_reltab(struct object *obj, struct segment *seg)
if (type != SHT_REL && type != SHT_RELA) if (type != SHT_REL && type != SHT_RELA)
continue; continue;
if ((type == SHT_REL && B32(hdr->sh_entsize) !=
sizeof(Elf32_Rel)) || (type == SHT_RELA &&
B32(hdr->sh_entsize) != sizeof(Elf32_Rela))) {
ERROR("reltab [%d] has invalid entry size", i);
return M_ERROR;
}
if (B32(hdr->sh_info) != seg->shdr_idx) if (B32(hdr->sh_info) != seg->shdr_idx)
continue; continue;
@ -101,9 +108,8 @@ static int load_reltab(struct object *obj, struct segment *seg)
uint32_t len = B32(hdr->sh_size); uint32_t len = B32(hdr->sh_size);
uint32_t off = B32(hdr->sh_offset); uint32_t off = B32(hdr->sh_offset);
seg->reltab.symtab = symtab; seg->reltab.symtab = symtab;
seg->reltab.len = len; seg->reltab.len = len / B32(hdr->sh_entsize);
seg->reltab.raw = obj->mapped + off; seg->reltab.raw = obj->mapped + off;
seg->reltab.type = type; seg->reltab.type = type;
@ -131,5 +137,18 @@ int segment_load(struct object *obj, struct segment *seg, size_t index)
if (load_reltab(obj, seg)) if (load_reltab(obj, seg))
return M_ERROR; return M_ERROR;
seg->off = B32(seg->phdr->p_offset);
seg->vaddr = B32(seg->phdr->p_vaddr);
seg->size = B32(seg->phdr->p_filesz);
seg->new_off = 0;
seg->new_vaddr = 0;
seg->read = B32(seg->phdr->p_flags) & PF_R;
seg->write = B32(seg->phdr->p_flags) & PF_W;
seg->execute = B32(seg->phdr->p_flags) & PF_X;
seg->align = B32(seg->phdr->p_align);
seg->obj = obj;
return M_SUCCESS; return M_SUCCESS;
} }

147
mld/segtab.c Normal file
View file

@ -0,0 +1,147 @@
#include <stdlib.h>
#include <merror.h>
#include "link.h"
#define SEGTAB_INIT_SIZE 8
int segtab_init(struct segment_table *segtab)
{
segtab->len = 0;
segtab->size = SEGTAB_INIT_SIZE;
segtab->entries = malloc(sizeof(struct segment_table_entry) *
SEGTAB_INIT_SIZE);
if (segtab->entries == NULL) {
PERROR("cannot alloc");
return M_ERROR;
}
return M_SUCCESS;
}
void segtab_free(struct segment_table *segtab)
{
for (uint32_t i = 0; i < segtab->len; i++) {
segtab_ent_free(&segtab->entries[i]);
}
free(segtab->entries);
}
/* create a new entry with <seg> as its first segment part */
int segtab_push(struct segment_table *segtab, struct segment_table_entry **res,
struct segment *seg)
{
if (segtab->len >= segtab->size) {
uint32_t size = segtab->size * 2;
void *new = realloc(segtab->entries,
sizeof(struct segment_table_entry) * size);
if (new == NULL) {
PERROR("cannot relloc");
return M_ERROR;
}
segtab->size = size;
segtab->entries = new;
}
struct segment_table_entry ent;
if (segtab_ent_init(&ent))
return M_ERROR;
ent.name = seg->name;
ent.vaddr = seg->vaddr;
ent.off = seg->off;
if (segtab_ent_push(&ent, seg)) {
segtab_ent_free(&ent);
return M_ERROR;
}
segtab->entries[segtab->len] = ent;
if (res != NULL)
*res = &segtab->entries[segtab->len];
segtab->len++;
return M_SUCCESS;
}
/* find a segment table entry with a given name */
int segtab_get(struct segment_table *segtab, struct segment_table_entry **ent,
const char *name)
{
for (uint32_t i = 0; i < segtab->len; i++) {
const char *segname = segtab->entries[i].name;
if (strcmp(name, segname) != 0)
continue;
*ent = &segtab->entries[i];
return M_SUCCESS;
}
return M_ERROR;
}
int segtab_ent_init(struct segment_table_entry *ent)
{
ent->len = 0;
ent->size = SEGTAB_INIT_SIZE;
ent->parts = malloc(sizeof(struct segment *) *
SEGTAB_INIT_SIZE);
if (ent->parts == NULL) {
PERROR("cannot alloc");
return M_ERROR;
}
return M_SUCCESS;
}
void segtab_ent_free(struct segment_table_entry *ent)
{
free(ent->parts);
}
int segtab_ent_push(struct segment_table_entry *ent, struct segment *seg)
{
if (ent->len >= ent->size) {
uint32_t size = ent->size * 2;
void *new = realloc(ent->parts,
sizeof(struct segment *) * size);
if (new == NULL) {
PERROR("cannot relloc");
return M_ERROR;
}
ent->size = size;
ent->parts = new;
}
if (ent->len > 0) {
struct segment *first = ent->parts[0];
if (first->align != seg->align) {
ERROR("segment '%s' doest not have matching alignment",
ent->name);
}
if (first->read != seg->read ||
first->write != seg->write ||
first->execute != seg->execute) {
ERROR("segment '%s' doest not have matching RWX",
ent->name);
}
} else {
ent->off = seg->new_off;
ent->vaddr = seg->new_vaddr;
}
ent->parts[ent->len++] = seg;
return M_SUCCESS;
}
uint32_t segtab_ent_size(struct segment_table_entry *ent)
{
uint32_t size = 0;
for (uint32_t i = 0; i < ent->len; i++) {
size += ent->parts[i]->size;
}
return size;
}

56
mld/strtab.c Normal file
View file

@ -0,0 +1,56 @@
#include <merror.h>
#include <stdlib.h>
#include "link.h"
int strtab_init(struct string_table *strtab)
{
strtab->len = 1;
strtab->data = malloc(1);
if (strtab->data == NULL) {
PERROR("cannot alloc");
return M_ERROR;
}
strtab->data[0] = '\0';
return M_SUCCESS;
}
void strtab_free(struct string_table *strtab)
{
free(strtab->data);
}
int strtab_push(struct string_table *strtab, const char *str, size_t *res)
{
if (strtab_get(strtab, str, res) == M_SUCCESS)
return M_SUCCESS;
size_t len = strlen(str);
char *new = realloc(strtab->data, strtab->len + len + 1);
if (new == NULL) {
PERROR("cannot realloc");
return M_ERROR;
}
strtab->data = new;
memcpy(strtab->data + strtab->len, str, len + 1);
if (res != NULL)
*res = strtab->len;
strtab->len += len + 1;
return M_SUCCESS;
}
int strtab_get(struct string_table *strtab, const char *str, size_t *res)
{
for (size_t i = 0; i < strtab->len; i++) {
if (strcmp(strtab->data + i, str) == 0) {
if (res != NULL)
*res = i;
return M_SUCCESS;
}
}
return M_ERROR;
}

60
mld/symtab.c Normal file
View file

@ -0,0 +1,60 @@
#include <elf.h>
#include <merror.h>
#include <stdlib.h>
#include <melf.h>
#include "link.h"
#define SYMTAB_INIT_LEN 8
int symtab_init(struct symbol_table *symtab)
{
symtab->len = 1;
symtab->size = SYMTAB_INIT_LEN;
symtab->syms = malloc(sizeof(Elf32_Sym) * SYMTAB_INIT_LEN);
if (symtab->syms == NULL) {
PERROR("cannot alloc");
return M_ERROR;
}
symtab->syms[0] = (Elf32_Sym){0};
return M_SUCCESS;
}
void symtab_free(struct symbol_table *symtab)
{
free(symtab->syms);
}
int symtab_push(struct symbol_table *symtab, const Elf32_Sym *sym)
{
if (symtab->len >= symtab->size) {
size_t size = symtab->size *= 2;
void *new = realloc(symtab->syms, sizeof(Elf32_Sym) * size);
if (new == NULL) {
PERROR("cannot realloc");
return M_ERROR;
}
symtab->size = size;
symtab->syms = new;
}
symtab->syms[symtab->len++] = *sym;
return M_SUCCESS;
}
int symtab_get(struct symbol_table *symtab, Elf32_Sym **res, const char *name)
{
for (size_t i = 0; i < symtab->len; i++) {
Elf32_Sym *sym = &symtab->syms[i];
const char *symname = symtab->strtab->data + B32(sym->st_name);
if (strcmp(name, symname) == 0) {
if (res != NULL)
*res = sym;
return M_SUCCESS;
}
}
return M_ERROR;
}

View file

@ -3,18 +3,15 @@ LD=afl-cc
BIN=../bin BIN=../bin
none: .PHONY: masm mld msim
clean: masm:
rm -fr $(BIN) make -C ../masm clean build CC=$(CC) LD=$(LD)
masm: clean
make -C ../masm build CC=$(CC) LD=$(LD)
$(BIN)/masm/masm -o ./mld/test.o ./masm/test.asm $(BIN)/masm/masm -o ./mld/test.o ./masm/test.asm
mld: clean mld:
make -C ../mld build CC=$(CC) LD=$(LD) make -C ../mld clean build CC=$(CC) LD=$(LD)
$(BIN)/mld/mld -o ./msim/test ./mld/test.o $(BIN)/mld/mld -o ./msim/test ./mld/test.o
msim: clean msim:
make -C ../msim build CC=$(CC) LD=$(LD) make -C ../msim clean build CC=$(CC) LD=$(LD)

Binary file not shown.

BIN
test/msim/test Normal file

Binary file not shown.