initial mips32 (r2000ish mips32r6) assembler

This commit is contained in:
Freya Murphy 2024-09-09 12:41:49 -04:00
commit 2ed2758216
Signed by: freya
GPG key ID: 744AB800E383AE52
27 changed files with 4034 additions and 0 deletions

1
.gitignore vendored Normal file
View file

@ -0,0 +1 @@
bin

674
LICENSE Normal file
View file

@ -0,0 +1,674 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.

5
README.md Normal file
View file

@ -0,0 +1,5 @@
### mips toolchain
lots to do still
do not use the

7
compile_flags.txt Normal file
View file

@ -0,0 +1,7 @@
-c
-std=c2x
-Wall
-Wextra
-pedantic
-Wno-gnu-binary-literal
-Iinclude

24
config.mk Normal file
View file

@ -0,0 +1,24 @@
# ======================= COMPILE OPTIONS ==
CC=cc
LD=cc
CFLAGS += -pipe
CFLAGS += -Wall -Wextra -pedantic
CFLAGS += -O3 -g
# ======================== CONFIG OPTIONS ==
#
# MAX LEX LENGTH
# Specifies how long a ident, register,
# instruction name, or any type of variable
# length text can be inside the lexer
#
# CFLAGS+= -DMAX_LEX_LENGTH=24
#
#
# MAX_ARG_LENGTH
# Specifies how many max arguments a given
# directive can hold
#
# CFLAGS+= -DMAX_ARG_LENGTH=12

37
include/merror.h Normal file
View file

@ -0,0 +1,37 @@
/* Copyright (c) 2024 Freya Murphy */
#ifndef __MERROR_H__
#define __MERROR_H__
/* Error codes
*/
#define M_SUCCESS 0
#define M_EOF 1
#define M_ERROR -1
#define __DEBUG 1
#define __WARNING 2
#define __ERROR 3
__attribute__((format(printf, 4, 5)))
void __log_impl_pos(int line, int column, int type, const char *format, ...);
void __log_impl(int type, const char *format, ...);
#define DEBUG(format, ...) \
__log_impl(__DEBUG, format, ##__VA_ARGS__)
#define WARNING(format, ...) \
__log_impl(__WARNING, format, ##__VA_ARGS__)
#define ERROR(format, ...) \
__log_impl(__ERROR, format, ##__VA_ARGS__)
#define DEBUG_POS(pos, format, ...) \
__log_impl_pos(pos.y, pos.x, __DEBUG, format, ##__VA_ARGS__)
#define WARNING_POS(pos, format, ...) \
__log_impl_pos(pos.y, pos.x, __WARNING, format, ##__VA_ARGS__)
#define ERROR_POS(pos, format, ...) \
__log_impl_pos(pos.y, pos.x, __ERROR, format, ##__VA_ARGS__)
#endif /* __MERROR_H__ */

16
include/mips.h Normal file
View file

@ -0,0 +1,16 @@
/* Copyright (c) 2024 Freya Murphy */
#ifndef __MIPS_H__
#define __MIPS_H__
#include <mips32.h>
union mips_instruction {
struct mips32_instruction mips32;
};
union mips_directive {
struct mips32_directive mips32;
};
#endif /* __MIPS_H */

496
include/mips32.h Normal file
View file

@ -0,0 +1,496 @@
/* Copyright (c) 2024 Freya Murphy */
#ifndef __MIPS32_H__
#define __MIPS32_H__
#include <mlimits.h>
#include <stdint.h>
/* all mips registers $0-$31 */
enum mips32_register {
MIPS32_REG_ZERO = 0,
MIPS32_REG_AT = 1,
MIPS32_REG_V0 = 2,
MIPS32_REG_V1 = 3,
MIPS32_REG_A0 = 4,
MIPS32_REG_A1 = 5,
MIPS32_REG_A2 = 6,
MIPS32_REG_A3 = 7,
MIPS32_REG_T0 = 8,
MIPS32_REG_T1 = 9,
MIPS32_REG_T2 = 10,
MIPS32_REG_T3 = 11,
MIPS32_REG_T4 = 12,
MIPS32_REG_T5 = 13,
MIPS32_REG_T6 = 14,
MIPS32_REG_T7 = 15,
MIPS32_REG_S0 = 16,
MIPS32_REG_S1 = 17,
MIPS32_REG_S2 = 18,
MIPS32_REG_S3 = 19,
MIPS32_REG_S4 = 20,
MIPS32_REG_S5 = 21,
MIPS32_REG_S6 = 22,
MIPS32_REG_S7 = 23,
MIPS32_REG_T8 = 24,
MIPS32_REG_T9 = 25,
MIPS32_REG_K0 = 26,
MIPS32_REG_K1 = 27,
MIPS32_REG_GP = 28,
MIPS32_REG_SP = 29,
MIPS32_REG_FP = 30,
MIPS32_REG_RA = 31,
};
/* mips instruction format */
enum mips32_instruction_format {
MIPS32_FORMAT_R,
MIPS32_FORMAT_I,
MIPS32_FORMAT_J,
MIPS32_FORMAT_B,
};
/* mips instructions */
enum mips32_instruction_type {
MIPS32_INS_ADD,
MIPS32_INS_ADDI,
MIPS32_INS_ADDIU,
MIPS32_INS_ADDU,
MIPS32_INS_AND,
MIPS32_INS_ANDI,
MIPS32_INS_BAL,
MIPS32_INS_BALC,
MIPS32_INS_BC,
MIPS32_INS_BEQ,
MIPS32_INS_BEQL,
MIPS32_INS_BGEZ,
MIPS32_INS_BGEZAL,
MIPS32_INS_BGEZALL,
MIPS32_INS_BGEZL,
MIPS32_INS_BGTZ,
MIPS32_INS_BGTZL,
MIPS32_INS_BLEZ,
MIPS32_INS_BLEZL,
MIPS32_INS_BLTZ,
MIPS32_INS_BLTZAL,
MIPS32_INS_BLTZALL,
MIPS32_INS_BLTZL,
MIPS32_INS_BNE,
MIPS32_INS_BNEL,
MIPS32_INS_DDIV,
MIPS32_INS_DDIVU,
MIPS32_INS_DIV,
MIPS32_INS_DIVU,
MIPS32_INS_J,
MIPS32_INS_JAL,
MIPS32_INS_JALR,
MIPS32_INS_JALX,
MIPS32_INS_JR,
MIPS32_INS_LB,
MIPS32_INS_LBU,
MIPS32_INS_LH,
MIPS32_INS_LHU,
MIPS32_INS_LUI,
MIPS32_INS_LW,
MIPS32_INS_LWL,
MIPS32_INS_LWR,
MIPS32_INS_MFHI,
MIPS32_INS_MFLO,
MIPS32_INS_MTHI,
MIPS32_INS_MTLO,
MIPS32_INS_MULT,
MIPS32_INS_MULTU,
MIPS32_INS_SB,
MIPS32_INS_SH,
MIPS32_INS_SW,
MIPS32_INS_SWL,
MIPS32_INS_SWR,
MIPS32_INS_SLL,
MIPS32_INS_SLLV,
MIPS32_INS_SLT,
MIPS32_INS_SLTI,
MIPS32_INS_SLTIU,
MIPS32_INS_SLTU,
MIPS32_INS_SRA,
MIPS32_INS_SRAV,
MIPS32_INS_SRL,
MIPS32_INS_SRLV,
MIPS32_INS_SUB,
MIPS32_INS_SUBU,
MIPS32_INS_OR,
MIPS32_INS_ORI,
MIPS32_INS_NOR,
MIPS32_INS_XOR,
MIPS32_INS_XORI,
// gets the size of the enum
__MIPS32_INS_LEN,
};
/* mips instruction R TYPE */
struct mips32_instruction_r_data {
uint32_t funct : 6;
uint32_t shamt : 5;
uint32_t rd : 5;
uint32_t rt : 5;
uint32_t rs : 5;
uint32_t op : 6;
} __attribute__((packed));
/* mips instruction I TYPE */
struct mips32_instruction_i_data {
uint32_t immd : 16;
uint32_t rt : 5;
uint32_t rs : 5;
uint32_t op : 6;
} __attribute__((packed));
/* mips instruction J TYPE */
struct mips32_instruction_j_data {
uint32_t target : 26;
uint32_t op : 6;
} __attribute__((packed));
/* mips instruction BRANCH TYPE */
struct mips32_instruction_branch_data {
int32_t offset : 16;
uint32_t funct : 5;
uint32_t rs : 5;
uint32_t op : 6;
} __attribute__((packed));
/* mips instruction information */
struct mips32_instruction {
// metadata
enum mips32_instruction_type type;
enum mips32_instruction_format format;
const char *name;
// data
union {
uint32_t data;
struct mips32_instruction_r_data R_data;
struct mips32_instruction_i_data I_data;
struct mips32_instruction_j_data J_data;
struct mips32_instruction_branch_data B_data;
} __attribute__((packed));
};
#define MIPS32_INS(ins, format, ...) \
[MIPS32_INS_ ##ins] = { \
MIPS32_INS_ ##ins, \
MIPS32_FORMAT_ ##format, \
#ins, \
.format##_data = { __VA_ARGS__ } \
}, \
static const struct mips32_instruction mips32_instructions[] = {
/* ADD - add */
#define MIPS32_OP_SPECIAL 0b000000
#define MIPS32_FUNCT_ADD 0b100000
MIPS32_INS(ADD, R, .op = MIPS32_OP_SPECIAL, .funct = MIPS32_FUNCT_ADD)
/* ADDI - add immediate */
#define MIPS32_OP_ADDI 0b001000
MIPS32_INS(ADDI, I, .op = MIPS32_OP_ADDI)
/* ADDIU - add immediate unsigned */
#define MIPS32_OP_ADDIU 0b001001
MIPS32_INS(ADDIU, I, .op = MIPS32_OP_ADDIU)
/* ADDU - add unsigned */
#define MIPS32_FUNCT_ADDU 0b100001
MIPS32_INS(ADDU, R, .op = MIPS32_OP_SPECIAL, .funct = MIPS32_FUNCT_ADDU)
/* AND - and */
#define MIPS32_FUNCT_AND 0b100100
MIPS32_INS(AND, R, .op = MIPS32_OP_SPECIAL, .funct = MIPS32_FUNCT_AND)
/* ANDI - and immediate */
#define MIPS32_OP_ANDI 0b001100
MIPS32_INS(ANDI, I, .op = MIPS32_OP_ANDI)
/* BAL - branch and link */
#define MIPS32_OP_REGIMM 0b000001
#define MIPS32_FUNCT_BAL 0b10001
MIPS32_INS(BAL, B, .op = MIPS32_OP_REGIMM, .funct = MIPS32_FUNCT_BAL)
/* BALC - branch and link, compact */
#define MIPS32_OP_BALC 0b111010
MIPS32_INS(BALC, J, .op = MIPS32_OP_BALC)
/* BC - branch, compact */
#define MIPS32_OP_BC 0b110010
MIPS32_INS(BC, J, .op = MIPS32_OP_BC)
/* BEQ - branch on equal */
#define MIPS32_OP_BEQ 0b000100
MIPS32_INS(BEQ, I, .op = MIPS32_OP_BEQ)
/* BEQL - branch on equal likely */
#define MIPS32_OP_BEQL 0b010100
MIPS32_INS(BEQL, I, .op = MIPS32_OP_BEQL)
/* BGEZ - branch on greater than or equal to zero */
#define MIPS32_FUNCT_BGEZ 0b00001
MIPS32_INS(BGEZ, B, .op = MIPS32_OP_REGIMM, .funct = MIPS32_FUNCT_BGEZ)
/* BGEZAL - branch on greater than or equal to zero and link */
#define MIPS32_FUNCT_BGEZAL 0b10001
MIPS32_INS(BGEZAL, B, .op = MIPS32_OP_REGIMM, .funct = MIPS32_FUNCT_BGEZAL)
/* BGEZAL - branch on greater than or equal to zero and link likely */
#define MIPS32_FUNCT_BGEZALL 0b10011
MIPS32_INS(BGEZALL, B, .op = MIPS32_OP_REGIMM, .funct = MIPS32_FUNCT_BGEZALL)
/* BGEZL - branch on greater than or equal to zero likely */
#define MIPS32_FUNCT_BGEZL 0b00011
MIPS32_INS(BGEZL, B, .op = MIPS32_OP_REGIMM, .funct = MIPS32_FUNCT_BGEZL)
/* BGTZ - branch on greater than zero */
#define MIPS32_OP_BGTZ 0b000111
MIPS32_INS(BGTZ, I, .op = MIPS32_OP_BGTZ)
/* BGTZL - branch on greater than zero likely */
#define MIPS32_OP_BGTZL 0b010111
MIPS32_INS(BGTZL, I, .op = MIPS32_OP_BGTZL)
/* BLEZ - branch on less than or equal to zero */
#define MIPS32_OP_BLEZ 0b000110
MIPS32_INS(BLEZ, I, .op = MIPS32_OP_BLEZ)
/* BLEZL - branch on less than or equal to zero likely */
#define MIPS32_OP_BLEZL 0b010110
MIPS32_INS(BLEZL, I, .op = MIPS32_OP_BLEZL)
/* BLTZ - branch on less than zero */
#define MIPS32_FUNCT_BLTZ 0b00000
MIPS32_INS(BLTZ, B, .op = MIPS32_OP_REGIMM, .funct = MIPS32_FUNCT_BLTZ)
/* BLTZAL - branch on less than zero and link */
#define MIPS32_FUNCT_BLTZAL 0b10000
MIPS32_INS(BLTZAL, B, .op = MIPS32_OP_REGIMM, .funct = MIPS32_FUNCT_BLTZAL)
/* BLTZALL - branch on less than zero and link likely */
#define MIPS32_FUNCT_BLTZALL 0b10010
MIPS32_INS(BLTZALL, B, .op = MIPS32_OP_REGIMM, .funct = MIPS32_FUNCT_BLTZALL)
/* BLTZL - branch on less than zero likely */
#define MIPS32_FUNCT_BLTZL 0b00010
MIPS32_INS(BLTZL, B, .op = MIPS32_OP_REGIMM, .funct = MIPS32_FUNCT_BLTZL)
/* BNE - branch on not equal */
#define MIPS32_OP_BNE 0b000101
MIPS32_INS(BNE, I, .op = MIPS32_OP_BNE)
/* BNEL - branch on not equal likely */
#define MIPS32_OP_BNEL 0b010101
MIPS32_INS(BNEL, I, .op = MIPS32_OP_BNEL)
/* DDIV - doubleword divide */
#define MIPS32_FUNCT_DDIV 0b011110
MIPS32_INS(DDIV, R, .op = MIPS32_OP_SPECIAL, .funct = MIPS32_FUNCT_DDIV)
/* DDIVU - doubleword divide unsigned */
#define MIPS32_FUNCT_DDIVU 0b011111
MIPS32_INS(DDIVU, R, .op = MIPS32_OP_SPECIAL, .funct = MIPS32_FUNCT_DDIVU)
/* DIV - divide */
#define MIPS32_FUNCT_DIV 0b011010
MIPS32_INS(DIV, R, .op = MIPS32_OP_SPECIAL, .funct = MIPS32_FUNCT_DIV)
/* DIVU - divide unsigned */
#define MIPS32_FUNCT_DIVU 0b011011
MIPS32_INS(DIVU, R, .op = MIPS32_OP_SPECIAL, .funct = MIPS32_FUNCT_DIVU)
/* J - jump */
#define MIPS32_OP_J 0b000010
MIPS32_INS(J, J, .op = MIPS32_OP_J)
/* JAL - jump and link */
#define MIPS32_OP_JAL 0b000011
MIPS32_INS(JAL, J, .op = MIPS32_OP_JAL)
/* JALR - jump and link register */
#define MIPS32_FUNCT_JALR 0b001001
MIPS32_INS(JALR, R, .op = MIPS32_OP_SPECIAL, .funct = MIPS32_FUNCT_JALR)
/* JALX - jump and link exchange */
#define MIPS32_OP_JALX 0b011101
MIPS32_INS(JALX, J, .op = MIPS32_OP_JALX)
/* JR - jump register */
#define MIPS32_FUNCT_JR 0b001000
MIPS32_INS(JR, R, .op = MIPS32_OP_SPECIAL, .funct = MIPS32_FUNCT_JR)
/* LB - load byte */
#define MIPS32_OP_LB 0b100000
MIPS32_INS(LB, I, .op = MIPS32_OP_LB)
/* LBU - load byte unsigned */
#define MIPS32_OP_LBU 0b100100
MIPS32_INS(LBU, I, .op = MIPS32_OP_LBU)
/* LH - load half */
#define MIPS32_OP_LH 0b100001
MIPS32_INS(LH, I, .op = MIPS32_OP_LH)
/* LHU - load half unsigned */
#define MIPS32_OP_LHU 0b100101
MIPS32_INS(LHU, I, .op = MIPS32_OP_LHU)
/* LUI - load upper immediate */
#define MIPS32_OP_LUI 0b001111
MIPS32_INS(LUI, I, .op = MIPS32_OP_LUI)
/* LW - load word */
#define MIPS32_OP_LW 0b100011
MIPS32_INS(LW, I, .op = MIPS32_OP_LW)
/* LWL - load word left */
#define MIPS32_OP_LWL 0b100010
MIPS32_INS(LWL, I, .op = MIPS32_OP_LWL)
/* LWR - load word right */
#define MIPS32_OP_LWR 0b100110
MIPS32_INS(LWR, I, .op = MIPS32_OP_LWR)
/* MFHI - move from hi */
#define MIPS32_FUNCT_MFHI 0b010000
MIPS32_INS(MFHI, R, .op = MIPS32_OP_SPECIAL, .funct = MIPS32_FUNCT_MFHI)
/* MFLO - move from hi */
#define MIPS32_FUNCT_MFLO 0b010010
MIPS32_INS(MFLO, R, .op = MIPS32_OP_SPECIAL, .funct = MIPS32_FUNCT_MFLO)
/* MTHI - move from hi */
#define MIPS32_FUNCT_MTHI 0b010001
MIPS32_INS(MTHI, R, .op = MIPS32_OP_SPECIAL, .funct = MIPS32_FUNCT_MTHI)
/* MTLO - move from hi */
#define MIPS32_FUNCT_MTLO 0b010011
MIPS32_INS(MTLO, R, .op = MIPS32_OP_SPECIAL, .funct = MIPS32_FUNCT_MTLO)
/* MULT - multiply */
#define MIPS32_FUNCT_MULT 0b011000
MIPS32_INS(MULT, R, .op = MIPS32_OP_SPECIAL, .funct = MIPS32_FUNCT_MULT)
/* MULTU - multiply unsigned */
#define MIPS32_FUNCT_MULTU 0b011001
MIPS32_INS(MULTU, R, .op = MIPS32_OP_SPECIAL, .funct = MIPS32_FUNCT_MULTU)
/* SB - store byte */
#define MIPS32_OP_SB 0b101000
MIPS32_INS(SB, I, .op = MIPS32_OP_SB)
/* SH - store half */
#define MIPS32_OP_SH 0b101001
MIPS32_INS(SH, I, .op = MIPS32_OP_SH)
/* SW - store word */
#define MIPS32_OP_SW 0b101011
MIPS32_INS(SW, I, .op = MIPS32_OP_SW)
/* SWL - store word left */
#define MIPS32_OP_SWL 0b101010
MIPS32_INS(SWL, I, .op = MIPS32_OP_SWL)
/* SWR - store word right */
#define MIPS32_OP_SWR 0b101110
MIPS32_INS(SWR, I, .op = MIPS32_OP_SWR)
/* SLL - shift left logical */
#define MIPS32_FUNCT_SLL 0b000000
MIPS32_INS(SLL, R, .op = MIPS32_OP_SPECIAL, .funct = MIPS32_FUNCT_SLL)
/* SLLV - shift left logical variable */
#define MIPS32_FUNCT_SLLV 0b000100
MIPS32_INS(SLLV, R, .op = MIPS32_OP_SPECIAL, .funct = MIPS32_FUNCT_SLLV)
/* SLT - set less then */
#define MIPS32_FUNCT_SLT 0b101010
MIPS32_INS(SLT, R, .op = MIPS32_OP_SPECIAL, .funct = MIPS32_FUNCT_SLT)
/* SLTI - set less then immediate */
#define MIPS32_OP_SLTI 0b001010
MIPS32_INS(SLTI, I, .op = MIPS32_OP_SLTI)
/* SLTIU - set less then imemdiate unsigned */
#define MIPS32_OP_SLTIU 0b001011
MIPS32_INS(SLTIU, I, .op = MIPS32_OP_SLTIU)
/* SLTU - set less than unsigned */
#define MIPS32_FUNCT_SLTU 0b101011
MIPS32_INS(SLTU, R, .op = MIPS32_OP_SPECIAL, .funct = MIPS32_FUNCT_SLTU)
/* SRA - shift right arithmetic */
#define MIPS32_FUNCT_SRA 0b000011
MIPS32_INS(SRA, R, .op = MIPS32_OP_SPECIAL, .funct = MIPS32_FUNCT_SRA)
/* SRAV - shift right arithmetic variable */
#define MIPS32_FUNCT_SRAV 0b000111
MIPS32_INS(SRAV, R, .op = MIPS32_OP_SPECIAL, .funct = MIPS32_FUNCT_SRAV)
/* SRL - shift right logical */
#define MIPS32_FUNCT_SRL 0b000010
MIPS32_INS(SRL, R, .op = MIPS32_OP_SPECIAL, .funct = MIPS32_FUNCT_SRL)
/* SRLV - shift right logical variable */
#define MIPS32_FUNCT_SRLV 0b000110
MIPS32_INS(SRLV, R, .op = MIPS32_OP_SPECIAL, .funct = MIPS32_FUNCT_SRLV)
/* SUB - subtract */
#define MIPS32_FUNCT_SUB 0b100010
MIPS32_INS(SUB, R, .op = MIPS32_OP_SPECIAL, .funct = MIPS32_FUNCT_SUB)
/* SUBU - subtract unsigned */
#define MIPS32_FUNCT_SUBU 0b100011
MIPS32_INS(SUBU, R, .op = MIPS32_OP_SPECIAL, .funct = MIPS32_FUNCT_SUBU)
/* OR - or */
#define MIPS32_FUNCT_OR 0b100101
MIPS32_INS(OR, R, .op = MIPS32_OP_SPECIAL, .funct = MIPS32_FUNCT_OR)
/* ORI - or imemdiate */
#define MIPS32_OP_ORI 0b001101
MIPS32_INS(ORI, I, .op = MIPS32_OP_ORI)
/* NOR - not or */
#define MIPS32_FUNCT_NOR 0b100111
MIPS32_INS(NOR, R, .op = MIPS32_OP_SPECIAL, .funct = MIPS32_FUNCT_NOR)
/* XOR - exclusive or */
#define MIPS32_FUNCT_XOR 0b100110
MIPS32_INS(XOR, R, .op = MIPS32_OP_SPECIAL, .funct = MIPS32_FUNCT_XOR)
/* XORI - exclusive or immediate */
#define MIPS32_OP_XORI 0b001110
MIPS32_INS(XORI, I, .op = MIPS32_OP_XORI)
};
#undef MIPS32_INS
/* mips32 directive types */
enum mips32_directive_type {
MIPS32_DIRECTIVE_ALIGN,
MIPS32_DIRECTIVE_SPACE,
MIPS32_DIRECTIVE_WORD,
MIPS32_DIRECTIVE_HALF,
MIPS32_DIRECTIVE_BYTE,
MIPS32_DIRECTIVE_SECTION,
};
/* mip32 directive */
struct mips32_directive {
enum mips32_directive_type type;
union {
uint16_t align;
uint16_t space;
uint32_t words[MAX_ARG_LENGTH];
uint16_t halfs[MAX_ARG_LENGTH];
uint8_t bytes[MAX_ARG_LENGTH];
char name[MAX_ARG_LENGTH];
};
};
#endif /* __MIPS32_H__ */

21
include/mlimits.h Normal file
View file

@ -0,0 +1,21 @@
/* Copyright (c) 2024 Freya Murphy */
#ifndef __MLIMITS_H__
#define __MLIMITS_H__
/* Specifies how long a ident, register,
* instruction name, or any type of variable
* length text can be inside the lexer.
*/
#ifndef MAX_LEX_LENGTH
#define MAX_LEX_LENGTH 24
#endif
/* Specifices how many max arguments a
* given directive can hold
*/
#ifndef MAX_ARG_LENGTH
#define MAX_ARG_LENGTH 12
#endif
#endif /* __MLIMITS_H__ */

53
lib/error.c Normal file
View file

@ -0,0 +1,53 @@
#include <merror.h>
#include <stdarg.h>
#include <stdio.h>
char *current_file = "file.asm";
__attribute__((format(printf, 4, 5)))
void __log_impl_pos(int line, int column, int type, const char *format, ...)
{
va_list list;
va_start(list, format);
char *t = NULL;
switch (type) {
case __DEBUG:
t = "\033[34mdebug:\033[0m";
break;
case __WARNING:
t = "\033[35mwarning:\033[0m";
break;
case __ERROR:
t = "\033[31merror:\033[0m";
break;
}
printf("%s:%d:%d: %s ", current_file, line, column, t);
vprintf(format, list);
putchar('\n');
}
__attribute__((format(printf, 2, 3)))
void __log_impl(int type, const char *format, ...)
{
va_list list;
va_start(list, format);
char *t = NULL;
switch (type) {
case __DEBUG:
t = "\033[34mdebug:\033[0m";
break;
case __WARNING:
t = "\033[35mwarning:\033[0m";
break;
case __ERROR:
t = "\033[31merror:\033[0m";
break;
}
printf("%s ", t);
vprintf(format, list);
putchar('\n');
}

32
makefile.mk Normal file
View file

@ -0,0 +1,32 @@
# needed cflags
CFLAGS += -std=c2x
# add include directory
CFLAGS += -isystem ../include
INCLUDE += ../include
# add lib directory
SRC += ../lib
H_SRC = $(shell find $(SRC) $(INCLUDE) -type f -name "*.h")
C_SRC = $(shell find $(SRC) -type f -name "*.c")
C_OBJ = $(patsubst %.c,$(BIN)/%.o,$(C_SRC))
.PHONY: clean build run
build: $(BIN)/$(OUT)
clean:
rm -fr $(BIN)
run: build
$(BIN)/$(OUT)
$(C_OBJ): $(BIN)/%.o : %.c
@mkdir -p $(@D)
$(CC) -c $(CFLAGS) -o $@ $<
$(BIN)/$(OUT): $(C_OBJ) $(H_SRC)
@mkdir -p $(@D)
$(LD) $(LDFLAGS) -o $(BIN)/$(OUT) $(C_OBJ)

363
masm/: Normal file
View file

@ -0,0 +1,363 @@
#include <merror.h>
#include <mips.h>
#include <mips32.h>
#include <stdio.h>
#include <stdlib.h>
#include <elf.h>
#include <string.h>
#include <stddef.h>
#include "asm.h"
#include "mlimits.h"
#include "parse.h"
#include "parse_mips32.h"
extern char *current_file;
#define SHDR_STRTBL 0
#define SHDR_SYMTBL 1
#define SHDR_SECTIONS 2
static int parse_file(struct parser *parser)
{
while (1) {
struct expr expr;
if (parser_next(parser, &expr)) {
break;
}
if (expr.type == EXPR_INS)
if (sectbl_push(&parser->sec_tbl,
parser->sec_tbl.current, expr.ins))
return M_ERROR;
}
for (uint32_t i = 0; i < parser->ref_tbl.count; i++) {
struct reference *ref = &parser->ref_tbl.references[i];
struct symbol *sym;
struct mips32_instruction *ins;
if (symtbl_find(&parser->sym_tbl, &sym, ref->name)) {
ERROR("undefined symbol '%s'", ref->name);
return M_ERROR;
}
ins = &ref->section->ins[ref->index].mips32;
switch (ref->type) {
case REF_OFFESET:
ins->B_data.offset += sym->position -
(ref->section->start + ref->index);
break;
case REF_TARGET:
ins->J_data.target += sym->position;
break;
}
};
return M_SUCCESS;
}
static int assemble_phdr(struct assembler *asm, Elf32_Phdr **res,
uint32_t *res2)
{
struct parser *parser = asm->parser;
Elf32_Phdr *phdr = malloc(sizeof(Elf32_Phdr) *
parser->sec_tbl.count);
size_t ins_sz = sizeof(struct mips32_instruction);
if (phdr == NULL) {
ERROR("cannot alloc");
return M_ERROR;;
}
for (uint32_t i = 0; i < parser->sec_tbl.count; i++) {
Elf32_Phdr *hdr = &phdr[i];
struct section *sec = &parser->sec_tbl.sections[i];
hdr->p_type = PT_LOAD;
hdr->p_flags = PF_X | PF_W | PF_R; // FIXME: this is bad
hdr->p_offset = sec->start * ins_sz;
hdr->p_vaddr = sec->start * ins_sz;
hdr->p_paddr = 0x00;
hdr->p_filesz = sec->count * ins_sz;
hdr->p_memsz = sec->count * ins_sz;
hdr->p_align = sec->alignment;
}
*res = phdr;
*res2 = parser->sec_tbl.count;
return M_SUCCESS;
}
static int assemble_symtbl(struct assembler *asm, Elf32_Sym **res,
uint32_t *res2)
{
Elf32_Sym *stbl = malloc(sizeof(Elf32_Sym) * asm->parser->sym_tbl
.count);
if (stbl == NULL)
return M_ERROR;
for (uint32_t i = 0; i < asm->parser->sym_tbl.count; i++) {
struct symbol *sym = &asm->parser->sym_tbl.symbols[i];
size_t str_off;
if (strtbl_write_str(&asm->str_tbl, sym->name, &str_off)) {
free(stbl);
return M_ERROR;
}
int viz = STB_LOCAL;
switch (sym->flag) {
case SYM_LOCAL:
viz = STB_LOCAL;
break;
case SYM_GLOBAL:
case SYM_EXTERNAL:
viz = STB_GLOBAL;
break;
}
stbl[i] = (Elf32_Sym) {
.st_name = str_off,
.st_value = sym->position,
.st_size = 0,
.st_info = (unsigned char)
ELF32_ST_INFO(SYMINFO_BT_SELF,
SYMINFO_FLG_DIRECT),
.st_other = (unsigned char)
ELF32_ST_VISIBILITY(viz),
.st_shndx = 0, // FIXME: specify section
};
};
*res = stbl;
*res2 = asm->parser->sym_tbl.count;
return M_SUCCESS;
}
static int assemble_shdr(struct assembler *asm, Elf32_Shdr **res,
uint32_t *res2)
{
uint32_t entries = 2; // str table and sym tabel
entries += asm->parser->sec_tbl.count; // sections
Elf32_Shdr *shdr = malloc(sizeof(Elf32_Shdr) * entries);
size_t str_off;
if (strtbl_write_str(&asm->str_tbl, ".shstrtab", &str_off)) {
free(shdr);
return M_ERROR;
}
// string table
shdr[SHDR_STRTBL] = (Elf32_Shdr) {
.sh_name = str_off,
.sh_type = SHT_STRTAB,
.sh_flags = SHF_STRINGS,
.sh_addr = 0,
.sh_offset = 0,
.sh_size = 0,
.sh_link = 0,
.sh_info = 0,
.sh_addralign = 1,
.sh_entsize = 0,
};
if (strtbl_write_str(&asm->str_tbl, ".shsymtab", &str_off)) {
free(shdr);
return M_ERROR;
}
// symbol table
shdr[SHDR_SYMTBL] = (Elf32_Shdr) {
.sh_name = str_off,
.sh_type = SHT_SYMTAB,
.sh_flags = 0,
.sh_addr = 0,
.sh_offset = 0,
.sh_size = 0,
.sh_link = 0,
.sh_info = 0,
.sh_addralign = 1,
.sh_entsize = sizeof(Elf32_Sym),
};
// for each section
for (uint32_t i = 0; i < asm->parser->sec_tbl.count; i++) {
struct section *sec = &asm->parser->sec_tbl.sections[i];
char name[MAX_LEX_LENGTH+1] = ".";
strcat(name, sec->name);
if (strtbl_write_str(&asm->str_tbl, name, &str_off)) {
free(shdr);
return M_ERROR;
}
shdr[i+SHDR_SECTIONS] = (Elf32_Shdr) {
.sh_name = str_off,
.sh_type = SHT_PROGBITS,
.sh_flags = SHF_WRITE | SHF_ALLOC | SHF_EXECINSTR,
.sh_addr = 0,
.sh_offset = 0,
.sh_size = 0,
.sh_link = 0,
.sh_info = 0,
.sh_addralign = sec->alignment,
.sh_entsize = sizeof(struct mips32_instruction),
};
}
*res = shdr;
*res2 = entries;
return M_SUCCESS;
}
static int assemble_file(struct assembler *asm)
{
Elf32_Phdr *phdr;
Elf32_Shdr *shdr;
Elf32_Sym *symtbl;
uint32_t phdr_len;
uint32_t shdr_len;
uint32_t symtbl_len;
if (assemble_symtbl(asm, &symtbl, &symtbl_len))
return M_ERROR;
if (assemble_phdr(asm, &phdr, &phdr_len)) {
free(symtbl);
return M_ERROR;
}
if (assemble_shdr(asm, &shdr, &shdr_len)) {
free(symtbl);
free(phdr);
return M_ERROR;
};
Elf32_Ehdr ehdr = {
.e_ident = {
[EI_MAG0] = ELFMAG0,
[EI_MAG1] = ELFMAG1,
[EI_MAG2] = ELFMAG2,
[EI_MAG3] = ELFMAG3,
[EI_CLASS] = ELFCLASS32,
[EI_DATA] = ELFDATA2LSB,
[EI_VERSION] = EV_CURRENT,
[EI_OSABI] = ELFOSABI_STANDALONE,
[EI_ABIVERSION] = 0x00,
[EI_PAD] = 0x00,
},
.e_type = ET_REL,
.e_machine = EM_MIPS,
.e_version = EV_CURRENT,
.e_entry = 0x00,
.e_phoff = 0x00,
.e_shoff = 0x00,
.e_flags = EF_MIPS_ARCH_32R6,
.e_ehsize = sizeof(Elf32_Ehdr),
.e_phentsize = 0x20,
.e_phnum = phdr_len,
.e_shentsize = 0x28,
.e_shnum = shdr_len,
.e_shstrndx = 0x00, // str table is always inx 0
};
uint32_t ptr = 0;
// we must now correct offets and sizes inside the ehdr, phdr,
// and shdr
ptr += sizeof(Elf32_Ehdr);
// phdr
ehdr.e_phoff = ptr;
ptr += phdr_len * sizeof(Elf32_Phdr);
// sections
for (uint32_t i = 0; i < asm->parser->sec_tbl.count; i++) {
phdr[i].p_offset = ptr;
phdr[i].p_vaddr = ptr;
shdr[i+SHDR_SECTIONS].sh_offset = ptr;
shdr[i+SHDR_SECTIONS].sh_size = phdr[i].p_filesz;
ptr += phdr[i].p_filesz;
}
// strtbl
shdr[SHDR_STRTBL].sh_offset = ptr;
shdr[SHDR_STRTBL].sh_size = asm->str_tbl.size;
ptr += asm->str_tbl.size;
// symtbl
ehdr.e_shoff = ptr;
shdr[SHDR_SYMTBL].sh_offset = ptr;
shdr[SHDR_SYMTBL].sh_size = symtbl_len * sizeof(Elf32_Sym);
ptr += symtbl_len * sizeof(Elf32_Sym);
FILE *out = fopen("/home/freya/out.o", "w");
// ehdr
fwrite(&ehdr, sizeof(Elf32_Ehdr), 1, out);
// phdr
fwrite(phdr, sizeof(Elf32_Phdr), phdr_len, out);
// sections
for (uint32_t i = 0; i < asm->parser->sec_tbl.count; i++) {
struct section *sec = &asm->parser->sec_tbl.sections[i];
for (uint32_t j = 0; j < sec->count; j++) {
struct mips32_instruction *ins = &sec->ins[j].mips32;
fwrite(ins, sizeof(struct mips32_instruction),
1, out);
}
}
// str tbl
fwrite(asm->str_tbl.ptr, asm->str_tbl.size, 1, out);
// sym tbl
fwrite(symtbl, sizeof(Elf32_Sym), symtbl_len, out);
// shdr
fwrite(shdr, sizeof(Elf32_Shdr), shdr_len, out);
fclose(out);
free(shdr);
free(phdr);
free(symtbl);
return M_SUCCESS;
}
int assemble_file_mips32(char *path)
{
struct lexer lexer;
struct parser parser;
current_file = path;
int res = M_SUCCESS;
if (lexer_init(current_file, &lexer))
return M_ERROR;
if (mips32_parser_init(&lexer, &parser))
return M_ERROR;
if (res == M_SUCCESS)
res = parse_file(&parser);
struct assembler assembler;
assembler.parser = &parser;
strtbl_init(&assembler.str_tbl);
if (res == M_SUCCESS)
res = assemble_file(&assembler);
strtbl_free(&assembler.str_tbl);
lexer_free(&lexer);
parser_free(&parser);
return res;
}

7
masm/Makefile Normal file
View file

@ -0,0 +1,7 @@
include ../config.mk
SRC=.
BIN=../bin/masm
OUT=masm
include ../makefile.mk

33
masm/asm.h Normal file
View file

@ -0,0 +1,33 @@
/* Copyright (c) 2024 Freya Murphy */
#ifndef __ASM_H__
#define __ASM_H__
#include <stddef.h>
struct str_table {
char *ptr;
size_t size;
};
/* initalize a string table */
void strtbl_init(struct str_table *str_tbl);
/* free a string table */
void strtbl_free(struct str_table *str_tbl);
/* get a string form the string table */
int strtbl_get_str(struct str_table *str_tbl, const char *str, size_t *res);
/* get or append a string into the string table */
int strtbl_write_str(struct str_table *str_tbl, const char *str, size_t *res);
struct assembler {
struct parser *parser;
struct str_table str_tbl;
};
/* assemble a mips32 file*/
int assemble_file_mips32(char *path);
#endif /* __ASM_H__ */

365
masm/asm_mips32.c Normal file
View file

@ -0,0 +1,365 @@
#include <merror.h>
#include <mips.h>
#include <mips32.h>
#include <stdio.h>
#include <stdlib.h>
#include <elf.h>
#include <string.h>
#include <stddef.h>
#include "asm.h"
#include "mlimits.h"
#include "parse.h"
#include "parse_mips32.h"
extern char *current_file;
#define SHDR_SYMTBL 0
#define SHDR_STRTBL 1
#define SHDR_SECTIONS 2
static int parse_file(struct parser *parser)
{
while (1) {
struct expr expr;
if (parser_next(parser, &expr)) {
break;
}
if (expr.type == EXPR_INS)
if (sectbl_push(&parser->sec_tbl,
parser->sec_tbl.current, expr.ins))
return M_ERROR;
}
for (uint32_t i = 0; i < parser->ref_tbl.count; i++) {
struct reference *ref = &parser->ref_tbl.references[i];
struct symbol *sym;
struct mips32_instruction *ins;
if (symtbl_find(&parser->sym_tbl, &sym, ref->name)) {
ERROR("undefined symbol '%s'", ref->name);
return M_ERROR;
}
ins = &ref->section->ins[ref->index].mips32;
switch (ref->type) {
case REF_OFFESET:
ins->B_data.offset += sym->position -
(ref->section->start + ref->index);
break;
case REF_TARGET:
ins->J_data.target += sym->position;
break;
}
};
return M_SUCCESS;
}
static int assemble_phdr(struct assembler *asm, Elf32_Phdr **res,
uint32_t *res2)
{
struct parser *parser = asm->parser;
Elf32_Phdr *phdr = malloc(sizeof(Elf32_Phdr) *
parser->sec_tbl.count);
size_t ins_sz = sizeof(struct mips32_instruction);
if (phdr == NULL) {
ERROR("cannot alloc");
return M_ERROR;;
}
for (uint32_t i = 0; i < parser->sec_tbl.count; i++) {
Elf32_Phdr *hdr = &phdr[i];
struct section *sec = &parser->sec_tbl.sections[i];
hdr->p_type = PT_LOAD;
hdr->p_flags = PF_X | PF_W | PF_R; // FIXME: this is bad
hdr->p_offset = sec->start * ins_sz;
hdr->p_vaddr = sec->start * ins_sz;
hdr->p_paddr = 0x00;
hdr->p_filesz = sec->count * ins_sz;
hdr->p_memsz = sec->count * ins_sz;
hdr->p_align = sec->alignment;
}
*res = phdr;
*res2 = parser->sec_tbl.count;
return M_SUCCESS;
}
static int assemble_symtbl(struct assembler *asm, Elf32_Sym **res,
uint32_t *res2)
{
Elf32_Sym *stbl = malloc(sizeof(Elf32_Sym) * asm->parser->sym_tbl
.count);
if (stbl == NULL)
return M_ERROR;
for (uint32_t i = 0; i < asm->parser->sym_tbl.count; i++) {
struct symbol *sym = &asm->parser->sym_tbl.symbols[i];
size_t str_off;
if (strtbl_write_str(&asm->str_tbl, sym->name, &str_off)) {
free(stbl);
return M_ERROR;
}
int viz = STB_LOCAL;
switch (sym->flag) {
case SYM_LOCAL:
viz = STB_LOCAL;
break;
case SYM_GLOBAL:
case SYM_EXTERNAL:
viz = STB_GLOBAL;
break;
}
stbl[i] = (Elf32_Sym) {
.st_name = str_off,
.st_value = sym->position,
.st_size = 0,
.st_info = (unsigned char)
ELF32_ST_INFO(SYMINFO_BT_SELF,
SYMINFO_FLG_DIRECT),
.st_other = (unsigned char)
ELF32_ST_VISIBILITY(viz),
.st_shndx = 0, // FIXME: specify section
};
};
*res = stbl;
*res2 = asm->parser->sym_tbl.count;
return M_SUCCESS;
}
static int assemble_shdr(struct assembler *asm, Elf32_Shdr **res,
uint32_t *res2)
{
uint32_t entries = 2; // str table and sym tabel
entries += asm->parser->sec_tbl.count; // sections
Elf32_Shdr *shdr = malloc(sizeof(Elf32_Shdr) * entries);
size_t str_off;
if (strtbl_write_str(&asm->str_tbl, ".shsymtab", &str_off)) {
free(shdr);
return M_ERROR;
}
// symbol table
shdr[SHDR_SYMTBL] = (Elf32_Shdr) {
.sh_name = str_off,
.sh_type = SHT_SYMTAB,
.sh_flags = 0,
.sh_addr = 0,
.sh_offset = 0,
.sh_size = 0,
.sh_link = 1,
.sh_info = 0,
.sh_addralign = 1,
.sh_entsize = sizeof(Elf32_Sym),
};
if (strtbl_write_str(&asm->str_tbl, ".shstrtab", &str_off)) {
free(shdr);
return M_ERROR;
}
// string table
shdr[SHDR_STRTBL] = (Elf32_Shdr) {
.sh_name = str_off,
.sh_type = SHT_STRTAB,
.sh_flags = SHF_STRINGS,
.sh_addr = 0,
.sh_offset = 0,
.sh_size = 0,
.sh_link = 0,
.sh_info = 0,
.sh_addralign = 1,
.sh_entsize = 0,
};
// for each section
for (uint32_t i = 0; i < asm->parser->sec_tbl.count; i++) {
struct section *sec = &asm->parser->sec_tbl.sections[i];
char name[MAX_LEX_LENGTH+1] = ".";
strcat(name, sec->name);
if (strtbl_write_str(&asm->str_tbl, name, &str_off)) {
free(shdr);
return M_ERROR;
}
shdr[i+SHDR_SECTIONS] = (Elf32_Shdr) {
.sh_name = str_off,
.sh_type = SHT_PROGBITS,
.sh_flags = SHF_WRITE | SHF_ALLOC | SHF_EXECINSTR,
.sh_addr = 0,
.sh_offset = 0,
.sh_size = 0,
.sh_link = 0,
.sh_info = 0,
.sh_addralign = sec->alignment,
.sh_entsize = sizeof(struct mips32_instruction),
};
}
*res = shdr;
*res2 = entries;
return M_SUCCESS;
}
static int assemble_file(struct assembler *asm)
{
Elf32_Phdr *phdr;
Elf32_Shdr *shdr;
Elf32_Sym *symtbl;
uint32_t phdr_len;
uint32_t shdr_len;
uint32_t symtbl_len;
if (assemble_symtbl(asm, &symtbl, &symtbl_len))
return M_ERROR;
if (assemble_phdr(asm, &phdr, &phdr_len)) {
free(symtbl);
return M_ERROR;
}
if (assemble_shdr(asm, &shdr, &shdr_len)) {
free(symtbl);
free(phdr);
return M_ERROR;
};
Elf32_Ehdr ehdr = {
.e_ident = {
[EI_MAG0] = ELFMAG0,
[EI_MAG1] = ELFMAG1,
[EI_MAG2] = ELFMAG2,
[EI_MAG3] = ELFMAG3,
[EI_CLASS] = ELFCLASS32,
[EI_DATA] = ELFDATA2LSB,
[EI_VERSION] = EV_CURRENT,
[EI_OSABI] = ELFOSABI_NONE,
[EI_ABIVERSION] = 0x00,
[EI_PAD] = 0x00,
},
.e_type = ET_REL,
.e_machine = EM_MIPS,
.e_version = EV_CURRENT,
.e_entry = 0x00,
.e_phoff = 0x00,
.e_shoff = 0x00,
.e_flags = EF_MIPS_ARCH_32R6,
.e_ehsize = sizeof(Elf32_Ehdr),
.e_phentsize = sizeof(Elf32_Phdr),
.e_phnum = phdr_len,
.e_shentsize = sizeof(Elf32_Shdr),
.e_shnum = shdr_len,
.e_shstrndx = SHDR_STRTBL,
};
uint32_t ptr = 0;
// we must now correct offets and sizes inside the ehdr, phdr,
// and shdr
ptr += sizeof(Elf32_Ehdr);
// phdr
ehdr.e_phoff = ptr;
ptr += phdr_len * sizeof(Elf32_Phdr);
// sections
for (uint32_t i = 0; i < asm->parser->sec_tbl.count; i++) {
phdr[i].p_offset = ptr;
phdr[i].p_vaddr = ptr;
shdr[i+SHDR_SECTIONS].sh_offset = ptr;
shdr[i+SHDR_SECTIONS].sh_size = phdr[i].p_filesz;
ptr += phdr[i].p_filesz;
}
// symtbl
shdr[SHDR_SYMTBL].sh_offset = ptr;
shdr[SHDR_SYMTBL].sh_size = symtbl_len * sizeof(Elf32_Sym);
ptr += symtbl_len * sizeof(Elf32_Sym);
// strtbl
shdr[SHDR_STRTBL].sh_offset = ptr;
shdr[SHDR_STRTBL].sh_size = asm->str_tbl.size;
ptr += asm->str_tbl.size;
// shdr
ehdr.e_shoff = ptr;
FILE *out = fopen("out.o", "w");
// ehdr
fwrite(&ehdr, sizeof(Elf32_Ehdr), 1, out);
// phdr
fwrite(phdr, sizeof(Elf32_Phdr), phdr_len, out);
// sections
for (uint32_t i = 0; i < asm->parser->sec_tbl.count; i++) {
struct section *sec = &asm->parser->sec_tbl.sections[i];
for (uint32_t j = 0; j < sec->count; j++) {
struct mips32_instruction *ins = &sec->ins[j].mips32;
fwrite(ins, sizeof(struct mips32_instruction),
1, out);
}
}
// sym tbl
fwrite(symtbl, sizeof(Elf32_Sym), symtbl_len, out);
// str tbl
fwrite(asm->str_tbl.ptr, asm->str_tbl.size, 1, out);
// shdr
fwrite(shdr, sizeof(Elf32_Shdr), shdr_len, out);
fclose(out);
free(shdr);
free(phdr);
free(symtbl);
return M_SUCCESS;
}
int assemble_file_mips32(char *path)
{
struct lexer lexer;
struct parser parser;
current_file = path;
int res = M_SUCCESS;
if (lexer_init(current_file, &lexer))
return M_ERROR;
if (mips32_parser_init(&lexer, &parser))
return M_ERROR;
if (res == M_SUCCESS)
res = parse_file(&parser);
struct assembler assembler;
assembler.parser = &parser;
strtbl_init(&assembler.str_tbl);
if (res == M_SUCCESS)
res = assemble_file(&assembler);
strtbl_free(&assembler.str_tbl);
lexer_free(&lexer);
parser_free(&parser);
return res;
}

343
masm/lex.c Normal file
View file

@ -0,0 +1,343 @@
#include "lex.h"
#include <mlimits.h>
#include <merror.h>
static struct {
int x;
int y;
} pos;
/* get next char in lexer */
static int lex_next(struct lexer *lexer)
{
if (lexer->peek != EOF) {
int c = lexer->peek;
lexer->peek = EOF;
return c;
}
int c = getc(lexer->file);
if (c == '\n') {
lexer->x = 0;
lexer->y++;
} else {
lexer->x++;
}
return c;
}
/* peek next char in lexer */
static int lex_peek(struct lexer *lexer)
{
if (lexer->peek == EOF)
lexer->peek = lex_next(lexer);
return lexer->peek;
}
/* skip all characters until EOF or newline */
static void skip_comment(struct lexer *lexer)
{
int c;
while (1) {
c = lex_next(lexer);
if (c == EOF || c == '\n')
break;
}
}
/* lexes text until whitespace
* returns error on zero length or too long */
static int lex_ident(struct lexer *lexer, char text[MAX_LEX_LENGTH])
{
int len = 0;
char *ptr = text;
int c;
while (1) {
c = lex_peek(lexer);
if (!(
(c >= 'a' && c <= 'z') ||
(c >= 'A' && c <= 'Z') ||
(c >= '0' && c <= '9') ||
(c == '_')
)) {
break;
}
// pop char out of lexer
lex_next(lexer);
if (len + 1 == MAX_LEX_LENGTH) {
ERROR_POS(pos, "ident has max length of %d",
MAX_LEX_LENGTH);
return M_ERROR;
}
*ptr++ = c;
len++;
}
if (len == 0) {
ERROR_POS(pos, "attempted to lex empty ident %d",
MAX_LEX_LENGTH);
return M_ERROR;
}
*ptr = '\0';
return M_SUCCESS;
}
/* lexes a string until closing quote
* returns error if string is too long or hit newline */
static int lex_string(struct lexer *lexer,char text[MAX_LEX_LENGTH])
{
int len = 0;
char *ptr = text;
int c;
while (1) {
c = lex_next(lexer);
if (c == '"')
break;
// match escape character
if (c == '\\') {
switch (lex_peek(lexer)) {
case 'n':
c = '\n';
lex_next(lexer);
break;
case 't':
c = '\t';
lex_next(lexer);
break;
case '\\':
c = '\\';
lex_next(lexer);
break;
case '"':
c = '"';
lex_next(lexer);
break;
}
}
// strings cannot span multiple lines
if (c == '\n') {
ERROR_POS(pos, "reached newline before end of string");
return M_ERROR;
}
if (len + 1 == MAX_LEX_LENGTH) {
ERROR_POS(pos, "string has max length of %d",
MAX_LEX_LENGTH);
return M_ERROR;
}
*ptr++ = c;
len++;
}
*ptr = '\0';
return M_SUCCESS;
}
/* lexes a integer number in base 2,8,10, or 16,
* uses base 10 by default but chan be changed by 0b, 0o, and 0x */
static int lex_number(struct lexer *lexer, int64_t *n)
{
int64_t number = 0;
int base = 10;
// skip all leading zeros, they dont do anything.
// this also allows us to directly check for 0b, 0o, and 0x
// right away!
while (1) {
if (lex_peek(lexer) == '0')
lex_next(lexer);
else
break;
}
// match change of base
switch (lex_peek(lexer)) {
case 'b':
base = 2;
lex_next(lexer);
break;
case 'o':
base = 8;
lex_next(lexer);
break;
case 'x':
base = 16;
lex_next(lexer);
break;
}
while (1) {
char c = lex_peek(lexer);
int n = 0;
if (c >= '0' && c <= '9') {
n = c - '0';
} else if (c >= 'a' && c <= 'z') { // match A-Z so we can
n = c - 'a' + 10; // catch the errors
} else if (c >= 'A' && c <= 'Z') { // here instead of later
n = c - 'A' + 10;
} else {
break; // no longer a number
}
// if number provided is bigger than my base,
// error !
if (n >= base) {
ERROR_POS(pos, "character '%c' is bigger than number base"
"'%d'", c, base);
return M_ERROR;
}
lex_next(lexer);
number *= base;
number += n;
}
*n = number;
return M_SUCCESS;
}
/* lex the next token on the file */
int lexer_next(struct lexer *lexer, struct token *token)
{
again: // use label to avoid whitespace recursion
token->x = lexer->x;
token->y = lexer->y;
pos.x = lexer->x;
pos.y = lexer->y;
token->type = TOK_EOF;
int c = lex_peek(lexer);
int res = M_SUCCESS;
switch (c) {
case EOF:
case '\0':
token->type = TOK_EOF;
break;
case ';':
case '#':
skip_comment(lexer);
goto again;
case ' ':
case '\t':
// skip white space
lex_next(lexer);
goto again;
case '\n':
lex_next(lexer);
token->type = TOK_NL;
break;
case ',':
lex_next(lexer);
token->type = TOK_COMMA;
break;
case '=':
lex_next(lexer);
token->type = TOK_EQUAL;
break;
case '(':
lex_next(lexer);
token->type = TOK_LPAREN;
break;
case ')':
token->type = TOK_RPAREN;
lex_next(lexer);
break;
case '$':
token->type = TOK_REG;
lex_next(lexer);
res = lex_ident(lexer, token->text);
break;
case '.':
token->type = TOK_DIRECTIVE;
lex_next(lexer);
res = lex_ident(lexer, token->text);
break;
case '"':
token->type = TOK_STRING;
lex_next(lexer);
res = lex_string(lexer, token->text);
break;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
token->type = TOK_NUMBER;
res = lex_number(lexer, &token->number);
break;
default:
token->type = TOK_IDENT;
res = lex_ident(lexer, token->text);
if (lex_peek(lexer) == ':') {
lex_next(lexer);
token->type = TOK_LABEL;
}
break;
}
return res;
}
int lexer_init(const char *path, struct lexer *lexer)
{
FILE *file = fopen(path, "r");
if (file == NULL) {
ERROR_POS(pos, "cannot file '%s'", path);
return M_ERROR;
}
lexer->file = file;
lexer->peek = EOF;
lexer->x = 0;
lexer->y = 0;
return M_SUCCESS;
}
int lexer_free(struct lexer *lexer)
{
return fclose(lexer->file);
}
char *token_str(enum token_type type)
{
switch (type) {
case TOK_IDENT:
return "ident";
case TOK_REG:
return "register";
case TOK_LABEL:
return "label";
case TOK_STRING:
return "string";
case TOK_COMMA:
return "comma";
case TOK_EQUAL:
return "equal";
case TOK_LPAREN:
return "left parentheses";
case TOK_RPAREN:
return "right parentheses";
case TOK_NUMBER:
return "number";
case TOK_EOF:
return "end of file";
case TOK_NL:
return "new line";
case TOK_DIRECTIVE:
return "directive";
}
return "unknown";
}

55
masm/lex.h Normal file
View file

@ -0,0 +1,55 @@
/* Copyright (c) 2024 Freya Murphy */
#ifndef __LEX_H__
#define __LEX_H__
#include <mlimits.h>
#include <stdio.h>
#include <stdint.h>
struct lexer {
FILE *file;
int peek;
int x;
int y;
};
enum token_type {
TOK_IDENT,
TOK_REG,
TOK_LABEL,
TOK_STRING,
TOK_COMMA,
TOK_EQUAL,
TOK_LPAREN,
TOK_RPAREN,
TOK_NUMBER,
TOK_EOF,
TOK_NL,
TOK_DIRECTIVE,
};
struct token {
enum token_type type;
union {
int64_t number;
char text[MAX_LEX_LENGTH];
};
int x;
int y;
};
/* initalize a lexer */
int lexer_init(const char *file, struct lexer *lexer);
/* free the lxer */
int lexer_free(struct lexer *lexer);
/* lexes the next token, returns M_ERROR on error,
* and TOK_EOF on EOF */
int lexer_next(struct lexer *lexer, struct token *token);
/* token type to string */
char *token_str(enum token_type);
#endif /* __LEX_H__ */

9
masm/main.c Normal file
View file

@ -0,0 +1,9 @@
#include "asm.h"
int main(int argc, char **argv) {
if (argc != 2)
return 0;
return assemble_file_mips32(argv[1]);
}

198
masm/parse.c Normal file
View file

@ -0,0 +1,198 @@
#include <mlimits.h>
#include <merror.h>
#include <stdio.h>
#include <string.h>
#include "parse.h"
#include "lex.h"
int next_token(struct parser *parser, struct token *tok)
{
if (parser->peek.type != TOK_EOF) {
if (tok != NULL)
*tok = parser->peek;
parser->peek.type = TOK_EOF;
return M_SUCCESS;
}
struct token token;
if (lexer_next(parser->lexer, &token))
return M_ERROR;
if (tok != NULL)
*tok = token;
return M_SUCCESS;
}
int peek_token(struct parser *parser, struct token *tok)
{
if (parser->peek.type == TOK_EOF) {
if (next_token(parser, &parser->peek))
return M_ERROR;
}
if (tok != NULL)
*tok = parser->peek;
return M_SUCCESS;
}
int assert_token(struct parser *parser, enum token_type type,
struct token *tok)
{
struct token token;
if (next_token(parser, &token))
return M_ERROR;
if (token.type != type) {
ERROR_POS(token, "expected a token of type '%s', got '%s'",
token_str(type), token_str(token.type));
return M_ERROR;
}
if (tok != NULL)
*tok = token;
return M_SUCCESS;
}
int assert_eol(struct parser *parser)
{
struct token token;
if (next_token(parser, &token))
return M_ERROR;
if (token.type != TOK_NL && token.type != TOK_EOF) {
ERROR_POS(token, "expected a new line or end of file");
return M_ERROR;
}
return M_SUCCESS;
}
static int parse_constant(struct parser *parser, struct const_expr *expr,
struct token ident)
{
struct token number;
if (assert_token(parser, TOK_EQUAL, NULL))
return M_ERROR;
if (assert_token(parser, TOK_NUMBER, &number))
return M_ERROR;
strcpy(expr->name,ident.text);
expr->value = number.number;
return M_SUCCESS;
}
static int parser_handle_ident(struct parser *parser, struct expr *expr)
{
struct token ident;
struct token peek;
if (assert_token(parser, TOK_IDENT, &ident))
return M_ERROR;
if (peek_token(parser, &peek))
return M_ERROR;
if (peek.type == TOK_EQUAL) {
expr->type = EXPR_CONSTANT;
return parse_constant(parser, &expr->constant, ident);
} else {
expr->type = EXPR_INS;
return parser->parse_instruction(parser, &expr->ins, ident);
}
}
static int parse_label(struct parser *parser,
struct expr *expr)
{
struct token token;
struct symbol symbol;
uint32_t index;
if (assert_token(parser, TOK_LABEL, &token))
return M_ERROR;
strcpy(expr->text, token.text);
if (symtbl_find(&parser->sym_tbl, NULL, token.text) == M_SUCCESS) {
ERROR_POS(token, "redefined symbol '%s'", token.text);
return M_ERROR;
}
index = parser->sec_tbl.current->start +
parser->sec_tbl.current->count;
symbol = (struct symbol) {
.name = "",
.position = index,
.flag = SYM_LOCAL,
};
strcpy(symbol.name, token.text);
if (symtbl_push(&parser->sym_tbl, symbol))
return M_ERROR;
return M_SUCCESS;
}
int parser_next(struct parser *parser, struct expr *expr)
{
struct token token;
int res = M_SUCCESS;
again:
if (peek_token(parser, &token))
return M_ERROR;
switch (token.type) {
case TOK_NL:
next_token(parser, NULL);
goto again;
case TOK_EOF:
res = M_EOF;
break;
case TOK_LABEL:
expr->type = EXPR_LABEL;
res = parse_label(parser, expr);
break;
case TOK_DIRECTIVE:
expr->type = EXPR_DIRECTIVE;
res = parser->parse_directive(parser,
&expr->directive);
break;
case TOK_IDENT:
res = parser_handle_ident(parser, expr);
break;
default:
ERROR_POS(token, "unexpected token '%s'",
token_str(token.type));
return M_ERROR;
}
return res;
}
int parser_init(struct lexer *lexer, struct parser *parser)
{
parser->lexer = lexer;
parser->peek.type = TOK_EOF;
if (symtbl_init(&parser->sym_tbl))
return M_ERROR;
if (sectbl_init(&parser->sec_tbl))
return M_ERROR;
if (reftbl_init(&parser->ref_tbl))
return M_ERROR;
return M_SUCCESS;
}
void parser_free(struct parser *parser)
{
symtbl_free(&parser->sym_tbl);
sectbl_free(&parser->sec_tbl);
reftbl_free(&parser->ref_tbl);
}

156
masm/parse.h Normal file
View file

@ -0,0 +1,156 @@
/* Copyright (c) 2024 Freya Murphy */
#ifndef __PARSE_H__
#define __PARSE_H__
#include "lex.h"
#include <mlimits.h>
#include <mips.h>
#include <stdint.h>
struct const_expr {
char name[MAX_LEX_LENGTH];
uint32_t value;
};
enum expr_type {
EXPR_INS,
EXPR_DIRECTIVE,
EXPR_CONSTANT,
EXPR_SEGMENT,
EXPR_LABEL,
};
struct expr {
enum expr_type type;
union {
// instruction
union mips_instruction ins;
// directive
union mips_directive directive;
// constant
struct const_expr constant;
// segment or label
char text[MAX_LEX_LENGTH];
};
};
enum symbol_flag {
SYM_LOCAL,
SYM_GLOBAL,
SYM_EXTERNAL,
};
struct symbol {
char name[MAX_LEX_LENGTH];
uint32_t position;
enum symbol_flag flag;
};
struct symbol_table {
uint32_t count;
uint32_t len;
struct symbol *symbols;
};
int symtbl_init(struct symbol_table *sym_tbl);
void symtbl_free(struct symbol_table *sym_tbl);
int symtbl_push(struct symbol_table *sym_tbl, struct symbol sym);
int symtbl_find(struct symbol_table *sym_tbl, struct symbol **sym,
const char name[MAX_LEX_LENGTH]);
struct section {
uint32_t count;
uint32_t len;
uint32_t start;
uint32_t alignment;
union mips_instruction *ins;
char name[MAX_LEX_LENGTH];
};
struct section_table {
uint32_t count;
uint32_t len;
struct section *sections;
struct section *current;
char name[MAX_LEX_LENGTH];
uint32_t total_ins;
};
int sectbl_init(struct section_table *sec_tbl);
void sectbl_free(struct section_table *sec_tbl);
int sectbl_alloc(struct section_table *sec_tbl, struct section **sec,
const char name[MAX_LEX_LENGTH]);
int sectbl_push(struct section_table *sec_tbl, struct section *section,
union mips_instruction ins);
int sectbl_get(struct section_table *sec_tbl, struct section **sec,
const char name[MAX_LEX_LENGTH]);
enum reference_type {
REF_OFFESET,
REF_TARGET,
};
struct reference {
enum reference_type type;
struct section *section;
uint32_t index;
char name[MAX_LEX_LENGTH];
};
struct reference_table {
uint32_t count;
uint32_t len;
struct reference *references;
};
int reftbl_init(struct reference_table *ref_tbl);
void reftbl_free(struct reference_table *ref_tbl);
int reftbl_push(struct reference_table *ref_tbl, struct reference reference);
struct parser {
struct lexer *lexer;
struct token peek;
// sections
struct section_table sec_tbl;
// symbols
struct symbol_table sym_tbl;
// references
struct reference_table ref_tbl;
int (*parse_instruction)(struct parser *, union mips_instruction *,
struct token);
int (*parse_directive)(struct parser *, union mips_directive *);
int (*is_instruction)(const char *ident);
};
/* get the next token in the parser */
int next_token(struct parser *parser, struct token *tok);
/* peek the next token in the parser */
int peek_token(struct parser *parser, struct token *tok);
/* assert the next token is a specific type */
int assert_token(struct parser *parser, enum token_type type,
struct token *tok);
/* assert the next token is EOF or NL */
int assert_eol(struct parser *parser);
/* get the next expression in the parser */
int parser_next(struct parser *parser, struct expr *expr);
/* initalize the base parser */
int parser_init(struct lexer *lexer, struct parser *parser);
/* free the base parser */
void parser_free(struct parser *parser);
#endif /* __PARSE_H__ */

847
masm/parse_mips32.c Normal file
View file

@ -0,0 +1,847 @@
#include <mips.h>
#include <mips32.h>
#include <merror.h>
#include <stdint.h>
#include <string.h>
#include <strings.h>
#include "parse_mips32.h"
#include "parse.h"
#include "mlimits.h"
#include "parse.h"
#include "lex.h"
/* each instruction has a given parse format
* internal to the parser */
enum mips32_parse_format {
// register type: rs, rt, td
MIPS32_PARSE_R,
// register type: rs, rt
MIPS32_PARSE_R2,
// register type: rd
MIPS32_PARSE_RD,
// register type: rs
MIPS32_PARSE_RS,
// imeediate type: rs, rt, immd
MIPS32_PARSE_I,
// jump type: offset
MIPS32_PARSE_J,
// jump type: register
MIPS32_PARSE_JR,
// offset 16b type: offset
MIPS32_PARSE_O16,
// offset 26b type: offset
MIPS32_PARSE_O26,
// breanch equal type: rs, rt, offset
MIPS32_PARSE_BE,
// branch zero type: rs, offset
MIPS32_PARSE_BZ,
// store and load: rt, offset(base)
MIPS32_PARSE_SL,
// store and load immediate: rt, immediate
MIPS32_PARSE_SLI,
// shift: rd, rt, sa
MIPS32_PARSE_S,
// shift variable: rd, rt, rs
MIPS32_PARSE_SV,
};
#define FORMAT(ins, format) \
[MIPS32_INS_##ins] = MIPS32_PARSE_##format, \
const enum mips32_parse_format mips32_parse_formats[] = {
FORMAT(ADD, R)
FORMAT(ADDI, I)
FORMAT(ADDIU, I)
FORMAT(ADDU, R)
FORMAT(AND, R)
FORMAT(ANDI, I)
FORMAT(BAL, O16)
FORMAT(BALC, O26)
FORMAT(BC, O26)
FORMAT(BEQ, BE)
FORMAT(BEQL, BE)
FORMAT(BGEZ, BZ)
FORMAT(BGEZAL, BZ)
FORMAT(BGEZALL, BZ)
FORMAT(BGEZL, BZ)
FORMAT(BGTZ, BZ)
FORMAT(BGTZL, BZ)
FORMAT(BLEZ, BZ)
FORMAT(BLEZL, BZ)
FORMAT(BLTZ, BZ)
FORMAT(BLTZAL, BZ)
FORMAT(BLTZALL, BZ)
FORMAT(BLTZL, BZ)
FORMAT(BNE, BE)
FORMAT(BNEL, BE)
FORMAT(DDIV, R2)
FORMAT(DDIVU, R2)
FORMAT(DIV, R2)
FORMAT(DIVU, R2)
FORMAT(J, J)
FORMAT(JAL, J)
FORMAT(JALR, JR) // TODO: handle rd
FORMAT(JALX, J)
FORMAT(JR, JR)
FORMAT(LB, SL)
FORMAT(LBU, SL)
FORMAT(LH, SL)
FORMAT(LHU, SL)
FORMAT(LUI, SLI)
FORMAT(LW, SL)
FORMAT(LWL, SL)
FORMAT(LWR, SL)
FORMAT(MFHI, RD)
FORMAT(MFLO, RD)
FORMAT(MTHI, RS)
FORMAT(MTLO, RS)
FORMAT(MULT, R2)
FORMAT(MULTU, R2)
FORMAT(SB, SL)
FORMAT(SH, SL)
FORMAT(SW, SL)
FORMAT(SWL, SL)
FORMAT(SLL, S)
FORMAT(SLLV, SV)
FORMAT(SLT, R)
FORMAT(SLTI, I)
FORMAT(SLTIU, I)
FORMAT(SLTU, R)
FORMAT(SRA, S)
FORMAT(SRAV, SV)
FORMAT(SRL, S)
FORMAT(SRLV, SV)
FORMAT(OR, R)
FORMAT(ORI, I)
FORMAT(NOR, R)
FORMAT(SUB, R)
FORMAT(SUBU, R)
FORMAT(XOR, R)
FORMAT(XORI, I)
};
#undef FORMAT
#define MAX5 32
#define MAX16 65536
#define MAX26 67108864
static int get_reference(struct parser *parser, uint32_t *offset,
enum reference_type type)
{
struct token token;
if (next_token(parser, &token))
return M_ERROR;
if (token.type == TOK_NUMBER) {
*offset = token.number;
return M_SUCCESS;
}
if (token.type != TOK_IDENT) {
ERROR_POS(token, "unexpected token of type '%s'",
token_str(token.type));
return M_ERROR;
}
struct reference reference = {
.section = parser->sec_tbl.current,
.index = parser->sec_tbl.current->count,
.type = type,
};
strcpy(reference.name, token.text);
if (reftbl_push(&parser->ref_tbl, reference))
return M_ERROR;
*offset = 0;
return M_SUCCESS;
}
static int get_offset(struct parser *parser, uint32_t *offset)
{
return get_reference(parser, offset, REF_OFFESET);
}
static int get_target(struct parser *parser, uint32_t *offset)
{
return get_reference(parser, offset, REF_TARGET);
}
static int get_instruction(const char *ident, struct mips32_instruction *res)
{
for (int i = 0; i < __MIPS32_INS_LEN; i++) {
struct mips32_instruction ins =
mips32_instructions[i];
if (strcasecmp(ident, ins.name) == 0) {
if (res != NULL)
*res = ins;
return M_SUCCESS;
}
}
return M_ERROR;
}
static int is_instruction(const char *ident)
{
return get_instruction(ident, NULL);
}
static int parse_register(struct parser *parser, enum mips32_register *reg)
{
struct token token;
if (assert_token(parser, TOK_REG, &token))
return M_ERROR;
int len = strlen(token.text);
int c0 = len > 0 ? token.text[0] : '\0',
c1 = len > 1 ? token.text[1] : '\0',
c2 = len > 2 ? token.text[2] : '\0',
c3 = len > 3 ? token.text[3] : '\0';
// $zero
if (c0 == 'z') {
if (c1 == 'e' && c2 == 'r' && c3 == 'o') {
*reg = MIPS32_REG_ZERO;
return M_SUCCESS;
}
}
// $a0-a3 $at
else if (c0 == 'a') {
if (c1 == 't') {
*reg = MIPS32_REG_AT;
return M_SUCCESS;
}
if (c1 >= '0' && c1 <= '3') {
*reg = MIPS32_REG_A0;
*reg += c1 - '0';
return M_SUCCESS;
}
}
// $v0-v1
else if (c0 == 'v') {
if (c1 >= '0' && c1 <= '1') {
*reg = MIPS32_REG_V0;
*reg += c1 - '0';
return M_SUCCESS;
}
}
// $t0-t9
else if (c0 == 't') {
if (c1 >= '0' && c1 <= '7') {
*reg = MIPS32_REG_T0;
*reg += c1 - '0';
return M_SUCCESS;
}
// reg T8-T9 are not in order with T0-T7
if (c1 >= '8' && c1 <= '9') {
*reg = MIPS32_REG_T8;
*reg += c1 - '8';
return M_SUCCESS;
}
}
// $s0-s7 $sp
else if (c0 == 's') {
if (c1 >= '0' && c1 <= '7') {
*reg = MIPS32_REG_S0;
*reg += c1 - '0';
return M_SUCCESS;
}
if (c1 == 'p') {
*reg = MIPS32_REG_SP;
return M_SUCCESS;
}
}
// $k0-k1
else if (c0 == 'k') {
if (c1 >= '0' && c1 <= '1') {
*reg = MIPS32_REG_K0;
*reg += c1 - '0';
return M_SUCCESS;
}
}
// $gp
else if (c0 == 'g') {
if (c1 == 'p') {
*reg = MIPS32_REG_GP;
return M_SUCCESS;
}
}
// $fp
else if (c0 == 'f') {
if (c1 == 'p') {
*reg = MIPS32_REG_FP;
return M_SUCCESS;
}
}
// $rp
else if (c0 == 'r') {
if (c1 == 'p') {
*reg = MIPS32_REG_RA;
return M_SUCCESS;
}
}
// $0-31 (non aliased register names)
else if (c0 >= '0' && c0 <= '9') {
int i = c0 - '0';
if (c1 >= '0' && c1 <= '9') {
i *= 10;
i += c1 - '0';
}
if (i <= 31) {
*reg = i;
return M_SUCCESS;
}
}
ERROR_POS(token, "unknown register $%s", token.text);
return M_ERROR;
}
static int parse_instruction_r(struct parser *parser,
struct mips32_instruction *ins)
{
// format: rs, rt, rd
enum mips32_register reg;
if (parse_register(parser, &reg))
return M_ERROR;
ins->R_data.rd = reg;
if (assert_token(parser, TOK_COMMA, NULL))
return M_ERROR;
if (parse_register(parser, &reg))
return M_ERROR;
ins->R_data.rs = reg;
if (assert_token(parser, TOK_COMMA, NULL))
return M_ERROR;
if (parse_register(parser, &reg))
return M_ERROR;
ins->R_data.rt = reg;
return M_SUCCESS;
}
static int parse_instruction_r2(struct parser *parser,
struct mips32_instruction *ins)
{
// format: rs, rt
enum mips32_register reg;
if (parse_register(parser, &reg))
return M_ERROR;
ins->R_data.rs = reg;
if (assert_token(parser, TOK_COMMA, NULL))
return M_ERROR;
if (parse_register(parser, &reg))
return M_ERROR;
ins->R_data.rt = reg;
return M_SUCCESS;
}
static int parse_instruction_rs(struct parser *parser,
struct mips32_instruction *ins)
{
// format: rs
enum mips32_register reg;
if (parse_register(parser, &reg))
return M_ERROR;
ins->R_data.rs = reg;
return M_SUCCESS;
}
static int parse_instruction_rd(struct parser *parser,
struct mips32_instruction *ins)
{
// format: rd
enum mips32_register reg;
if (parse_register(parser, &reg))
return M_ERROR;
ins->R_data.rd = reg;
return M_SUCCESS;
}
static int parse_instruction_i(struct parser *parser,
struct mips32_instruction *ins)
{
// format: rs, rt, immd
enum mips32_register reg;
struct token token;
if (parse_register(parser, &reg))
return M_ERROR;
ins->I_data.rt = reg;
if (assert_token(parser, TOK_COMMA, NULL))
return M_ERROR;
if (parse_register(parser, &reg))
return M_ERROR;
ins->I_data.rs = reg;
if (assert_token(parser, TOK_COMMA, NULL))
return M_ERROR;
if (assert_token(parser, TOK_NUMBER, &token))
return M_ERROR;
if (token.number >= MAX16)
return M_ERROR;
ins->I_data.immd = token.number;
return M_SUCCESS;
}
static int parse_instruction_offset(struct parser *parser,
uint32_t max,
struct mips32_instruction *ins)
{
uint32_t n;
if (get_offset(parser, &n) || n > max)
return M_ERROR;
switch (max) {
case MAX26:
ins->J_data.target = n;
break;
case MAX16:
ins->B_data.offset = n;
break;
}
return M_SUCCESS;
}
static int parse_instruction_j(struct parser *parser,
struct mips32_instruction *ins)
{
uint32_t n;
if (get_target(parser, &n) || n > MAX26)
return M_ERROR;
ins->J_data.target = n;
return M_SUCCESS;
}
static int parse_instruction_jr(struct parser *parser,
struct mips32_instruction *ins)
{
uint32_t n;
if (get_target(parser, &n) || n > MAX26)
return M_ERROR;
ins->J_data.target = n;
return M_SUCCESS;
}
static int parse_instruction_branch_equal(struct parser *parser,
struct mips32_instruction *ins)
{
enum mips32_register reg;
if (parse_register(parser, &reg))
return M_ERROR;
ins->R_data.rs = reg;
return M_SUCCESS;
}
static int parse_instruction_branch(struct parser *parser,
struct mips32_instruction *ins)
{
enum mips32_register reg;
uint32_t n;
if (parse_register(parser, &reg))
return M_ERROR;
ins->B_data.rs = reg;
if (assert_token(parser, TOK_COMMA, NULL))
return M_ERROR;
if (get_offset(parser, &n) || n > MAX16)
return M_ERROR;
ins->B_data.offset = n;
return M_SUCCESS;
}
static int parse_instruction_sl(struct parser *parser,
struct mips32_instruction *ins)
{
enum mips32_register reg;
uint32_t offset = 0;
struct token token;
if (parse_register(parser, &reg))
return M_ERROR;
ins->I_data.rt = reg;
if (assert_token(parser, TOK_COMMA, NULL))
return M_ERROR;
if (peek_token(parser, &token))
return M_ERROR;
if (token.type != TOK_LPAREN)
if (get_offset(parser, &offset))
return M_ERROR;
ins->I_data.immd = offset;
if (peek_token(parser, &token))
return M_ERROR;
if (token.type == TOK_NL) {
ins->I_data.rs = MIPS32_REG_ZERO;
return M_SUCCESS;
}
if (assert_token(parser, TOK_LPAREN, NULL))
return M_ERROR;
if (parse_register(parser, &reg))
return M_ERROR;
ins->I_data.rs = reg;
if (assert_token(parser, TOK_RPAREN, NULL))
return M_ERROR;
return M_SUCCESS;
}
static int parse_instruction_sli(struct parser *parser,
struct mips32_instruction *ins)
{
enum mips32_register reg;
struct token token;
if (parse_register(parser, &reg))
return M_ERROR;
ins->I_data.rt = reg;
if (assert_token(parser, TOK_COMMA, NULL))
return M_ERROR;
if (assert_token(parser, TOK_NUMBER, &token) || token.number > MAX16)
return M_ERROR;
ins->I_data.immd = token.number;
return M_SUCCESS;
}
static int parse_instruction_s(struct parser *parser,
struct mips32_instruction *ins)
{
enum mips32_register reg;
struct token token;
if (parse_register(parser, &reg))
return M_ERROR;
ins->R_data.rd = reg;
if (assert_token(parser, TOK_COMMA, NULL))
return M_ERROR;
if (parse_register(parser, &reg))
return M_ERROR;
ins->R_data.rt = reg;
if (assert_token(parser, TOK_COMMA, NULL))
return M_ERROR;
if (assert_token(parser, TOK_NUMBER, &token) || token.number > MAX5)
return M_ERROR;
ins->R_data.shamt = token.number;
return M_SUCCESS;
}
static int parse_instruction_sv(struct parser *parser,
struct mips32_instruction *ins)
{
enum mips32_register reg;
if (parse_register(parser, &reg))
return M_ERROR;
ins->R_data.rd = reg;
if (assert_token(parser, TOK_COMMA, NULL))
return M_ERROR;
if (parse_register(parser, &reg))
return M_ERROR;
ins->R_data.rt = reg;
if (assert_token(parser, TOK_COMMA, NULL))
return M_ERROR;
if (parse_register(parser, &reg))
return M_ERROR;
ins->R_data.rs = reg;
return M_SUCCESS;
}
static int parse_instruction(struct parser *parser,
union mips_instruction *ins,
struct token ident)
{
struct mips32_instruction instruction;
enum mips32_parse_format format;
int res = M_SUCCESS;
if (get_instruction(ident.text, &instruction)) {
ERROR_POS(ident, "unknown instruction '%s'", ident.text);
return M_ERROR;
}
ins->mips32 = instruction;
format = mips32_parse_formats[instruction.type];
switch (format) {
case MIPS32_PARSE_R:
res = parse_instruction_r(parser, &ins->mips32);
break;
case MIPS32_PARSE_R2:
res = parse_instruction_r2(parser, &ins->mips32);
break;
case MIPS32_PARSE_RS:
res = parse_instruction_rs(parser, &ins->mips32);
break;
case MIPS32_PARSE_RD:
res = parse_instruction_rd(parser, &ins->mips32);
break;
case MIPS32_PARSE_I:
res = parse_instruction_i(parser, &ins->mips32);
break;
case MIPS32_PARSE_J:
res = parse_instruction_j(parser, &ins->mips32);
break;
case MIPS32_PARSE_JR:
res = parse_instruction_jr(parser, &ins->mips32);
break;
case MIPS32_PARSE_O16:
res = parse_instruction_offset(parser, MAX16, &ins->mips32);
break;
case MIPS32_PARSE_O26:
res = parse_instruction_offset(parser, MAX26, &ins->mips32);
break;
case MIPS32_PARSE_BE:
res = parse_instruction_branch_equal(parser, &ins->mips32);
break;
case MIPS32_PARSE_BZ:
res = parse_instruction_branch(parser, &ins->mips32);
break;
case MIPS32_PARSE_SL:
res = parse_instruction_sl(parser, &ins->mips32);
break;
case MIPS32_PARSE_SLI:
res = parse_instruction_sli(parser, &ins->mips32);
break;
case MIPS32_PARSE_S:
res = parse_instruction_s(parser, &ins->mips32);
break;
case MIPS32_PARSE_SV:
res = parse_instruction_sv(parser, &ins->mips32);
break;
}
if (res == M_SUCCESS && assert_eol(parser))
return M_ERROR;
return res;
}
static int parse_directive_align(struct parser *parser,
struct mips32_directive *directive)
{
struct token token;
if (assert_token(parser, TOK_NUMBER, &token))
return M_ERROR;
if (token.number < 0) {
ERROR_POS(token, "cannot align negative");
return M_ERROR;
}
if (token.number > MAX16) {
ERROR_POS(token, "cannot align more than 65kb");
return M_ERROR;
}
directive->type = MIPS32_DIRECTIVE_ALIGN;
directive->align = token.number;
return M_SUCCESS;
}
static int parse_directive_space(struct parser *parser,
struct mips32_directive *directive)
{
struct token token;
if (assert_token(parser, TOK_NUMBER, &token))
return M_ERROR;
if (token.number < 0) {
ERROR_POS(token, "cannot reserve negative");
return M_ERROR;
}
if (token.number > MAX16) {
ERROR_POS(token, "cannot reserve more than 65kb");
return M_ERROR;
}
directive->type = MIPS32_DIRECTIVE_SPACE;
directive->space = token.number;
return M_SUCCESS;
}
static int parse_directive_whb(struct parser *parser,
struct mips32_directive *directive,
enum mips32_directive_type type)
{
struct token token;
uint32_t size = 0;
uint32_t len = 0;
switch (type) {
case MIPS32_DIRECTIVE_WORD:
size = UINT32_MAX;
break;
case MIPS32_DIRECTIVE_HALF:
size = UINT16_MAX;
break;
case MIPS32_DIRECTIVE_BYTE:
size = UINT8_MAX;
break;
default:
}
directive->type = type;
while (1) {
if (assert_token(parser, TOK_NUMBER, &token))
return M_ERROR;
if (len >= MAX_ARG_LENGTH) {
ERROR_POS(token, "directives cannot be longer than "
"%d arguments", MAX_ARG_LENGTH);
return M_ERROR;
}
if (token.number > size) {
ERROR_POS(token, "number cannot execede max size of: "
"%d", size);
return M_ERROR;
}
switch (type) {
case MIPS32_DIRECTIVE_WORD:
directive->words[len++] = token.number;
break;
case MIPS32_DIRECTIVE_HALF:
directive->halfs[len++] = token.number;
break;
case MIPS32_DIRECTIVE_BYTE:
directive->bytes[len++] = token.number;
break;
default:
}
if (peek_token(parser, &token))
return M_ERROR;
if (token.type == TOK_COMMA) {
next_token(parser, NULL);
continue;
}
break;
}
return M_SUCCESS;
}
static int parse_section(struct parser *parser,
struct mips32_directive *directive,
char name[MAX_LEX_LENGTH])
{
directive->type = MIPS32_DIRECTIVE_SECTION;
strcpy(directive->name, name);
struct section *sec;
if (sectbl_get(&parser->sec_tbl, &sec, name) == M_SUCCESS) {
parser->sec_tbl.current = sec;
return M_SUCCESS;
}
if (sectbl_alloc(&parser->sec_tbl, &sec, name))
return M_ERROR;
parser->sec_tbl.current = sec;
return M_SUCCESS;
}
static int parse_directive(struct parser *parser,
union mips_directive *directive)
{
struct token token;
if (assert_token(parser, TOK_DIRECTIVE, &token))
return M_ERROR;
// .align n
if (strcmp(token.text, "align") == 0)
return parse_directive_align(parser, &directive->mips32);
else if (strcmp(token.text, "space") == 0)
return parse_directive_space(parser, &directive->mips32);
else if (strcmp(token.text, "word") == 0)
return parse_directive_whb(parser, &directive->mips32,
MIPS32_DIRECTIVE_WORD);
else if (strcmp(token.text, "half") == 0)
return parse_directive_whb(parser, &directive->mips32,
MIPS32_DIRECTIVE_HALF);
else if (strcmp(token.text, "byte") == 0)
return parse_directive_whb(parser, &directive->mips32,
MIPS32_DIRECTIVE_BYTE);
else
return parse_section(parser, &directive->mips32, token.text);
}
int mips32_parser_init(struct lexer *lexer, struct parser *parser)
{
if (parser_init(lexer, parser))
return M_ERROR;
parser->parse_instruction = parse_instruction;
parser->is_instruction = is_instruction;
parser->parse_directive = parse_directive;
return M_SUCCESS;
}
void mips32_parser_free(struct parser *parser)
{
parser_free(parser);
}

14
masm/parse_mips32.h Normal file
View file

@ -0,0 +1,14 @@
/* Copyright (c) 2024 Freya Murphy */
#ifndef __PARSE_MIPS32_H__
#define __PARSE_MIPS32_H__
#include "parse.h"
/* initzlize a mips32 parser*/
int mips32_parser_init(struct lexer *lexer, struct parser *parser);
/* free the mips32 parser */
void mips32_parser_free(struct parser *parser);
#endif /* __PARSE_MIPS32_H__ */

47
masm/reftbl.c Normal file
View file

@ -0,0 +1,47 @@
#include <string.h>
#include <stdlib.h>
#include <mips.h>
#include <merror.h>
#include <mlimits.h>
#include "parse.h"
#define RELTBL_INIT_LEN 8
int reftbl_init(struct reference_table *ref_tbl)
{
ref_tbl->len = RELTBL_INIT_LEN;
ref_tbl->count = 0;
ref_tbl->references = malloc(sizeof(struct reference) *
RELTBL_INIT_LEN);
if (ref_tbl->references == NULL) {
ERROR("cannot alloc");
return M_ERROR;
}
return M_SUCCESS;
}
void reftbl_free(struct reference_table *ref_tbl)
{
free(ref_tbl->references);
}
int reftbl_push(struct reference_table *ref_tbl, struct reference reference)
{
if (ref_tbl->count >= ref_tbl->len) {
ref_tbl->len *= 2;
ref_tbl->references = realloc(ref_tbl->references,
sizeof(struct reference) * ref_tbl->len);
if (ref_tbl->references == NULL) {
ERROR("cannot realloc");
return M_ERROR;
}
}
ref_tbl->references[ref_tbl->count++] = reference;
return M_SUCCESS;
}

103
masm/sectbl.c Normal file
View file

@ -0,0 +1,103 @@
#include <string.h>
#include <stdlib.h>
#include <mips.h>
#include <merror.h>
#include <mlimits.h>
#include "parse.h"
#define SECTBL_INIT_LEN 8
static const char inital_section[MAX_LEX_LENGTH] = "data";
int sectbl_init(struct section_table *sec_tbl)
{
sec_tbl->len = SECTBL_INIT_LEN;
sec_tbl->count = 0;
sec_tbl->total_ins = 0;
sec_tbl->sections = malloc(sizeof(struct section) * SECTBL_INIT_LEN);
if (sec_tbl->sections == NULL) {
ERROR("cannot alloc");
return M_ERROR;
}
if (sectbl_alloc(sec_tbl, &sec_tbl->current, inital_section))
return M_ERROR;
return M_SUCCESS;
}
void sectbl_free(struct section_table *sec_tbl)
{
for (uint32_t i = 0; i < sec_tbl->count; i++) {
free(sec_tbl->sections[i].ins);
}
free(sec_tbl->sections);
}
int sectbl_alloc(struct section_table *sec_tbl, struct section **sec,
const char name[MAX_LEX_LENGTH])
{
if (sec_tbl->count >= sec_tbl->len) {
sec_tbl->len *= 2;
sec_tbl->sections = realloc(sec_tbl->sections,
sizeof(struct section) * sec_tbl->len);
if (sec_tbl->sections == NULL) {
ERROR("cannot realloc");
return M_ERROR;
}
}
struct section *temp;
temp = &sec_tbl->sections[sec_tbl->count++];
strcpy(temp->name,name);
temp->count = 0;
temp->len = SECTBL_INIT_LEN;
temp->start = sec_tbl->total_ins;
temp->alignment = 1;
temp->ins = malloc(sizeof(union mips_instruction) * SECTBL_INIT_LEN);
if (temp->ins == NULL) {
ERROR("cannot alloc");
return M_ERROR;
}
*sec = temp;
return M_SUCCESS;
}
int sectbl_push(struct section_table *sec_tbl, struct section *section,
union mips_instruction ins)
{
if (section->count >= section->len) {
section->len *= 2;
section->ins = realloc(section->ins,
sizeof(union mips_instruction) * section->len);
if (section->ins == NULL) {
ERROR("cannot realloc");
return M_ERROR;
}
}
section->ins[section->count++] = ins;
sec_tbl->total_ins++;
return M_SUCCESS;
}
int sectbl_get(struct section_table *sec_tbl, struct section **sec,
const char name[MAX_LEX_LENGTH])
{
for (uint32_t i = 0; i < sec_tbl->count; i++) {
struct section *temp = &sec_tbl->sections[i];
if (strcmp(name, temp->name) == 0) {
if (sec != NULL)
*sec = temp;
return M_SUCCESS;
}
}
return M_ERROR;
}

49
masm/strtbl.c Normal file
View file

@ -0,0 +1,49 @@
#include <merror.h>
#include <string.h>
#include <stdlib.h>
#include "asm.h"
int strtbl_get_str(struct str_table *str_tbl, const char *str, size_t *res)
{
for (size_t i = 0; i < str_tbl->size; i ++) {
if (strcmp(str_tbl->ptr + i, str) == 0) {
if (res != NULL)
*res = i;
return M_SUCCESS;
}
}
return M_ERROR;
}
int strtbl_write_str(struct str_table *str_tbl, const char *str, size_t *res)
{
if (strtbl_get_str(str_tbl, str, res) == M_SUCCESS)
return M_SUCCESS;
size_t len = strlen(str);
char *new = realloc(str_tbl->ptr, str_tbl->size + len + 1);
if (new == NULL)
return M_ERROR;
str_tbl->ptr = new;
memcpy(str_tbl->ptr + str_tbl->size, str, len + 1);
if (res != NULL)
*res = str_tbl->size;
str_tbl->size += len + 1;
return M_SUCCESS;
}
void strtbl_init(struct str_table *str_tbl)
{
str_tbl->size = 1;
str_tbl->ptr = malloc(1);
*str_tbl->ptr = '\0';
}
void strtbl_free(struct str_table *str_tbl)
{
free(str_tbl->ptr);
}

57
masm/symtbl.c Normal file
View file

@ -0,0 +1,57 @@
#include <merror.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "parse.h"
#define SYMTBL_INIT_LEN 24
int symtbl_init(struct symbol_table *sym_tbl)
{
sym_tbl->len = SYMTBL_INIT_LEN;
sym_tbl->count = 0;
sym_tbl->symbols = malloc(sizeof(struct symbol) * SYMTBL_INIT_LEN);
if (sym_tbl->symbols == NULL) {
ERROR("cannot alloc");
return M_ERROR;
}
return M_SUCCESS;
}
void symtbl_free(struct symbol_table *sym_tbl)
{
free(sym_tbl->symbols);
}
int symtbl_push(struct symbol_table *sym_tbl, struct symbol sym)
{
if (sym_tbl->count >= sym_tbl->len) {
sym_tbl->len *= 2;
sym_tbl->symbols = realloc(sym_tbl->symbols,
sizeof(struct symbol) * sym_tbl->len);
if (sym_tbl->symbols == NULL) {
ERROR("cannot relloc");
return M_ERROR;
}
}
sym_tbl->symbols[sym_tbl->count++] = sym;
return M_SUCCESS;
}
int symtbl_find(struct symbol_table *sym_tbl, struct symbol **ptr,
const char name[MAX_LEX_LENGTH])
{
for (uint32_t i = 0; i < sym_tbl->count; i++) {
struct symbol *sym = &sym_tbl->symbols[i];
if (strcmp(sym->name, name) == 0) {
if (ptr != NULL)
*ptr = sym;
return M_SUCCESS;
}
}
return M_ERROR;
}

22
masm/test.asm Normal file
View file

@ -0,0 +1,22 @@
.text
.align 2
main:
add $zero,$t7,$t7
xori $a0, $v1, 69
addi $a0, $v1, 69
nor $s0, $s1, $s2
bltzall $s7, 0x50
lui $t7, 0x55
lw $t0, 18($t7)
sll $t0, $s0, 17
test:
mult $a0, $s6
mfhi $s0
mtlo $s7
j test