kern/kernel/procs.c
2025-04-01 12:32:51 -04:00

1116 lines
25 KiB
C

/*
** @file procs.c
**
** @author CSCI-452 class of 20245
**
** @brief Process-related implementations
*/
#define KERNEL_SRC
#include <common.h>
#include <procs.h>
#include <user.h>
/*
** PRIVATE DEFINITIONS
*/
// determine if a queue is empty; assumes 'q' is a valid pointer
#define PCB_QUEUE_EMPTY(q) ((q)->head == NULL)
/*
** PRIVATE DATA TYPES
*/
/*
** PCB Queue structure
**
** Opaque to the rest of the kernel
**
** Typedef'd in the header: typedef struct pcb_queue_s *pcb_queue_t;
*/
struct pcb_queue_s {
pcb_t *head;
pcb_t *tail;
enum pcb_queue_order_e order;
};
/*
** PRIVATE GLOBAL VARIABLES
*/
// collection of queues
static struct pcb_queue_s pcb_freelist_queue;
static struct pcb_queue_s ready_queue;
static struct pcb_queue_s waiting_queue;
static struct pcb_queue_s sleeping_queue;
static struct pcb_queue_s zombie_queue;
static struct pcb_queue_s sioread_queue;
/*
** PUBLIC GLOBAL VARIABLES
*/
// public-facing queue handles
pcb_queue_t pcb_freelist;
pcb_queue_t ready;
pcb_queue_t waiting;
pcb_queue_t sleeping;
pcb_queue_t zombie;
pcb_queue_t sioread;
// pointer to the currently-running process
pcb_t *current;
// the process table
pcb_t ptable[N_PROCS];
// next available PID
uint_t next_pid;
// pointer to the PCB for the 'init' process
pcb_t *init_pcb;
// table of state name strings
const char state_str[N_STATES][4] = {
[STATE_UNUSED] = "Unu", // "Unused"
[STATE_NEW] = "New",
[STATE_READY] = "Rdy", // "Ready"
[STATE_RUNNING] = "Run", // "Running"
[STATE_SLEEPING] = "Slp", // "Sleeping"
[STATE_BLOCKED] = "Blk", // "Blocked"
[STATE_WAITING] = "Wat", // "Waiting"
[STATE_KILLED] = "Kil", // "Killed"
[STATE_ZOMBIE] = "Zom" // "Zombie"
};
// table of priority name strings
const char prio_str[N_PRIOS][5] = { [PRIO_HIGH] = "High",
[PRIO_STD] = "User",
[PRIO_LOW] = "Low ",
[PRIO_DEFERRED] = "Def " };
// table of queue ordering name strings
const char ord_str[N_PRIOS][5] = { [O_FIFO] = "FIFO",
[O_PRIO] = "PRIO",
[O_PID] = "PID ",
[O_WAKEUP] = "WAKE" };
/*
** PRIVATE FUNCTIONS
*/
/**
** Priority search functions. These are used to traverse a supplied
** queue looking for the queue entry that would precede the supplied
** PCB when that PCB is inserted into the queue.
**
** Variations:
** find_prev_wakeup() compares wakeup times
** find_prev_priority() compares process priorities
** find_prev_pid() compares PIDs
**
** Each assumes the queue should be in ascending order by the specified
** comparison value.
**
** @param[in] queue The queue to search
** @param[in] pcb The PCB to look for
**
** @return a pointer to the predecessor in the queue, or NULL if
** this PCB would be at the beginning of the queue.
*/
static pcb_t *find_prev_wakeup(pcb_queue_t queue, pcb_t *pcb)
{
// sanity checks!
assert1(queue != NULL);
assert1(pcb != NULL);
pcb_t *prev = NULL;
pcb_t *curr = queue->head;
while (curr != NULL && curr->wakeup <= pcb->wakeup) {
prev = curr;
curr = curr->next;
}
return prev;
}
static pcb_t *find_prev_priority(pcb_queue_t queue, pcb_t *pcb)
{
// sanity checks!
assert1(queue != NULL);
assert1(pcb != NULL);
pcb_t *prev = NULL;
pcb_t *curr = queue->head;
while (curr != NULL && curr->priority <= pcb->priority) {
prev = curr;
curr = curr->next;
}
return prev;
}
static pcb_t *find_prev_pid(pcb_queue_t queue, pcb_t *pcb)
{
// sanity checks!
assert1(queue != NULL);
assert1(pcb != NULL);
pcb_t *prev = NULL;
pcb_t *curr = queue->head;
while (curr != NULL && curr->pid <= pcb->pid) {
prev = curr;
curr = curr->next;
}
return prev;
}
/*
** PUBLIC FUNCTIONS
*/
// a macro to simplify queue setup
#define QINIT(q, s) \
q = &q##_queue; \
if (pcb_queue_reset(q, s) != SUCCESS) { \
PANIC(0, "pcb_init can't reset " #q); \
}
/**
** Name: pcb_init
**
** Initialization for the Process module.
*/
void pcb_init(void)
{
#if TRACING_INIT
cio_puts(" Procs");
#endif
// there is no current process
current = NULL;
// set up the external links to the queues
QINIT(pcb_freelist, O_FIFO);
QINIT(ready, O_PRIO);
QINIT(waiting, O_PID);
QINIT(sleeping, O_WAKEUP);
QINIT(zombie, O_PID);
QINIT(sioread, O_FIFO);
/*
** We statically allocate our PCBs, so we need to add them
** to the freelist before we can use them. If this changes
** so that we dynamicallyl allocate PCBs, this step either
** won't be required, or could be used to pre-allocate some
** number of PCB structures for future use.
*/
pcb_t *ptr = ptable;
for (int i = 0; i < N_PROCS; ++i) {
pcb_free(ptr);
++ptr;
}
}
/**
** Name: pcb_alloc
**
** Allocate a PCB from the list of free PCBs.
**
** @param pcb Pointer to a pcb_t * where the PCB pointer will be returned.
**
** @return status of the allocation attempt
*/
int pcb_alloc(pcb_t **pcb)
{
// sanity check!
assert1(pcb != NULL);
// remove the first PCB from the free list
pcb_t *tmp;
if (pcb_queue_remove(pcb_freelist, &tmp) != SUCCESS) {
return E_NO_PCBS;
}
*pcb = tmp;
return SUCCESS;
}
/**
** Name: pcb_free
**
** Return a PCB to the list of free PCBs.
**
** @param pcb Pointer to the PCB to be deallocated.
*/
void pcb_free(pcb_t *pcb)
{
if (pcb != NULL) {
// mark the PCB as available
pcb->state = STATE_UNUSED;
// add it to the free list
int status = pcb_queue_insert(pcb_freelist, pcb);
// if that failed, we're in trouble
if (status != SUCCESS) {
sprint(b256, "pcb_free(0x%08x) status %d", (uint32_t)pcb, status);
PANIC(0, b256);
}
}
}
/**
** Name: pcb_zombify
**
** Turn the indicated process into a Zombie. This function
** does most of the real work for exit() and kill() calls.
** Is also called from the scheduler and dispatcher.
**
** @param pcb Pointer to the newly-undead PCB
*/
void pcb_zombify(register pcb_t *victim)
{
// should this be an error?
if (victim == NULL) {
return;
}
// every process must have a parent, even if it's 'init'
assert(victim->parent != NULL);
/*
** We need to locate the parent of this process. We also need
** to reparent any children of this process. We do these in
** a single loop.
*/
pcb_t *parent = victim->parent;
pcb_t *zchild = NULL;
// two PIDs we will look for
uint_t vicpid = victim->pid;
// speed up access to the process table entries
register pcb_t *curr = ptable;
for (int i = 0; i < N_PROCS; ++i, ++curr) {
// make sure this is a valid entry
if (curr->state == STATE_UNUSED) {
continue;
}
// if this is our parent, just keep going - we continue
// iterating to find all the children of this process.
if (curr == parent) {
continue;
}
if (curr->parent == victim) {
// found a child - reparent it
curr->parent = init_pcb;
// see if this child is already undead
if (curr->state == STATE_ZOMBIE) {
// if it's already a zombie, remember it, so we
// can pass it on to 'init'; also, if there are
// two or more zombie children, it doesn't matter
// which one we pick here, as the others will be
// collected when 'init' loops
zchild = curr;
}
}
}
/*
** If we found a child that was already terminated, we need to
** wake up the init process if it's already waiting.
**
** Note: we only need to do this for one Zombie child process -
** init will loop and collect the others after it finishes with
** this one.
**
** Also note: it's possible that the exiting process' parent is
** also init, which means we're letting one of zombie children
** of the exiting process be cleaned up by init before the
** existing process itself is cleaned up by init. This will work,
** because after init cleans up the zombie, it will loop and
** call waitpid() again, by which time this exiting process will
** be marked as a zombie.
*/
if (zchild != NULL && init_pcb->state == STATE_WAITING) {
// dequeue the zombie
assert(pcb_queue_remove_this(zombie, zchild) == SUCCESS);
assert(pcb_queue_remove_this(waiting, init_pcb) == SUCCESS);
// intrinsic return value is the PID
RET(init_pcb) = zchild->pid;
// may also want to return the exit status
int32_t *ptr = (int32_t *)ARG(init_pcb, 2);
if (ptr != NULL) {
// ********************************************************
// ** Potential VM issue here! This code assigns the exit
// ** status into a variable in the parent's address space.
// ** This works in the baseline because we aren't using
// ** any type of memory protection. If address space
// ** separation is implemented, this code will very likely
// ** STOP WORKING, and will need to be fixed.
// ********************************************************
*ptr = zchild->exit_status;
}
// all done - schedule 'init', and clean up the zombie
schedule(init_pcb);
pcb_cleanup(zchild);
}
/*
** Now, deal with the parent of this process. If the parent is
** already waiting, just wake it up and clean up this process.
** Otherwise, this process becomes a zombie.
**
** Note: if the exiting process' parent is init and we just woke
** init up to deal with a zombie child of the exiting process,
** init's status won't be Waiting any more, so we don't have to
** worry about it being scheduled twice.
*/
if (parent->state == STATE_WAITING) {
// verify that the parent is either waiting for this process
// or is waiting for any of its children
uint32_t target = ARG(parent, 1);
if (target == 0 || target == vicpid) {
// the parent is waiting for this child or is waiting
// for any of its children, so we can wake it up.
// intrinsic return value is the PID
RET(parent) = vicpid;
// may also want to return the exit status
int32_t *ptr = (int32_t *)ARG(parent, 2);
if (ptr != NULL) {
// ********************************************************
// ** Potential VM issue here! This code assigns the exit
// ** status into a variable in the parent's address space.
// ** This works in the baseline because we aren't using
// ** any type of memory protection. If address space
// ** separation is implemented, this code will very likely
// ** STOP WORKING, and will need to be fixed.
// ********************************************************
*ptr = victim->exit_status;
}
// all done - schedule the parent, and clean up the zombie
schedule(parent);
pcb_cleanup(victim);
return;
}
}
/*
** The parent isn't waiting OR is waiting for a specific child
** that isn't this exiting process, so we become a Zombie.
**
** This code assumes that Zombie processes are *not* in
** a queue, but instead are just in the process table with
** a state of 'Zombie'. This simplifies life immensely,
** because we won't need to dequeue it when it is collected
** by its parent.
*/
victim->state = STATE_ZOMBIE;
assert(pcb_queue_insert(zombie, victim) == SUCCESS);
/*
** Note: we don't call _dispatch() here - we leave that for
** the calling routine, as it's possible we don't need to
** choose a new current process.
*/
}
/**
** Name: pcb_cleanup
**
** Reclaim a process' data structures
**
** @param pcb The PCB to reclaim
*/
void pcb_cleanup(pcb_t *pcb)
{
#if TRACING_PCB
cio_printf("** pcb_cleanup(0x%08x)\n", (uint32_t)pcb);
#endif
// avoid deallocating a NULL pointer
if (pcb == NULL) {
// should this be an error?
return;
}
// we need to release all the VM data structures and frames
user_cleanup(pcb);
// release the PCB itself
pcb_free(pcb);
}
/**
** Name: pcb_find_pid
**
** Locate the PCB for the process with the specified PID
**
** @param pid The PID to be located
**
** @return Pointer to the PCB, or NULL
*/
pcb_t *pcb_find_pid(uint_t pid)
{
// must be a valid PID
if (pid < 1) {
return NULL;
}
// scan the process table
pcb_t *p = ptable;
for (int i = 0; i < N_PROCS; ++i, ++p) {
if (p->pid == pid && p->state != STATE_UNUSED) {
return p;
}
}
// didn't find it!
return NULL;
}
/**
** Name: pcb_find_ppid
**
** Locate the PCB for the process with the specified parent
**
** @param pid The PID to be located
**
** @return Pointer to the PCB, or NULL
*/
pcb_t *pcb_find_ppid(uint_t pid)
{
// must be a valid PID
if (pid < 1) {
return NULL;
}
// scan the process table
pcb_t *p = ptable;
for (int i = 0; i < N_PROCS; ++i, ++p) {
assert1(p->parent != NULL);
if (p->parent->pid == pid && p->parent->state != STATE_UNUSED) {
return p;
}
}
// didn't find it!
return NULL;
}
/**
** Name: pcb_queue_reset
**
** Initialize a PCB queue. We assume that whatever data may be
** in the queue structure can be overwritten.
**
** @param queue[out] The queue to be initialized
** @param order[in] The desired ordering for the queue
**
** @return status of the init request
*/
int pcb_queue_reset(pcb_queue_t queue, enum pcb_queue_order_e style)
{
// sanity check
assert1(queue != NULL);
// make sure the style is valid
if (style < O_FIRST_STYLE || style > O_LAST_STYLE) {
return E_BAD_PARAM;
}
// reset the queue
queue->head = queue->tail = NULL;
queue->order = style;
return SUCCESS;
}
/**
** Name: pcb_queue_empty
**
** Determine whether a queue is empty. Essentially just a wrapper
** for the PCB_QUEUE_EMPTY() macro, for use outside this module.
**
** @param[in] queue The queue to check
**
** @return true if the queue is empty, else false
*/
bool_t pcb_queue_empty(pcb_queue_t queue)
{
// if there is no queue, blow up
assert1(queue != NULL);
return PCB_QUEUE_EMPTY(queue);
}
/**
** Name: pcb_queue_length
**
** Return the count of elements in the specified queue.
**
** @param[in] queue The queue to check
**
** @return the count (0 if the queue is empty)
*/
uint_t pcb_queue_length(const pcb_queue_t queue)
{
// sanity check
assert1(queue != NULL);
// this is pretty simple
register pcb_t *tmp = queue->head;
register int num = 0;
while (tmp != NULL) {
++num;
tmp = tmp->next;
}
return num;
}
/**
** Name: pcb_queue_insert
**
** Inserts a PCB into the indicated queue.
**
** @param queue[in,out] The queue to be used
** @param pcb[in] The PCB to be inserted
**
** @return status of the insertion request
*/
int pcb_queue_insert(pcb_queue_t queue, pcb_t *pcb)
{
// sanity checks
assert1(queue != NULL);
assert1(pcb != NULL);
// if this PCB is already in a queue, we won't touch it
if (pcb->next != NULL) {
// what to do? we let the caller decide
return E_BAD_PARAM;
}
// is the queue empty?
if (queue->head == NULL) {
queue->head = queue->tail = pcb;
return SUCCESS;
}
assert1(queue->tail != NULL);
// no, so we need to search it
pcb_t *prev = NULL;
// find the predecessor node
switch (queue->order) {
case O_FIFO:
prev = queue->tail;
break;
case O_PRIO:
prev = find_prev_priority(queue, pcb);
break;
case O_PID:
prev = find_prev_pid(queue, pcb);
break;
case O_WAKEUP:
prev = find_prev_wakeup(queue, pcb);
break;
default:
// do we need something more specific here?
return E_BAD_PARAM;
}
// OK, we found the predecessor node; time to do the insertion
if (prev == NULL) {
// there is no predecessor, so we're
// inserting at the front of the queue
pcb->next = queue->head;
if (queue->head == NULL) {
// empty queue!?! - should we panic?
queue->tail = pcb;
}
queue->head = pcb;
} else if (prev->next == NULL) {
// append at end
prev->next = pcb;
queue->tail = pcb;
} else {
// insert between prev & prev->next
pcb->next = prev->next;
prev->next = pcb;
}
return SUCCESS;
}
/**
** Name: pcb_queue_remove
**
** Remove the first PCB from the indicated queue.
**
** @param queue[in,out] The queue to be used
** @param pcb[out] Pointer to where the PCB pointer will be saved
**
** @return status of the removal request
*/
int pcb_queue_remove(pcb_queue_t queue, pcb_t **pcb)
{
//sanity checks
assert1(queue != NULL);
assert1(pcb != NULL);
// can't get anything if there's nothing to get!
if (PCB_QUEUE_EMPTY(queue)) {
return E_EMPTY_QUEUE;
}
// take the first entry from the queue
pcb_t *tmp = queue->head;
queue->head = tmp->next;
// disconnect it completely
tmp->next = NULL;
// was this the last thing in the queue?
if (queue->head == NULL) {
// yes, so clear the tail pointer for consistency
queue->tail = NULL;
}
// save the pointer
*pcb = tmp;
return SUCCESS;
}
/**
** Name: pcb_queue_remove_this
**
** Remove the specified PCB from the indicated queue.
**
** We don't return the removed pointer, because the calling
** routine must already have it (because it was supplied
** to us in the call).
**
** @param queue[in,out] The queue to be used
** @param pcb[in] Pointer to the PCB to be removed
**
** @return status of the removal request
*/
int pcb_queue_remove_this(pcb_queue_t queue, pcb_t *pcb)
{
//sanity checks
assert1(queue != NULL);
assert1(pcb != NULL);
// can't get anything if there's nothing to get!
if (PCB_QUEUE_EMPTY(queue)) {
return E_EMPTY_QUEUE;
}
// iterate through the queue until we find the desired PCB
pcb_t *prev = NULL;
pcb_t *curr = queue->head;
while (curr != NULL && curr != pcb) {
prev = curr;
curr = curr->next;
}
// case prev curr next interpretation
// ==== ==== ==== ==== ============================
// 1. 0 0 -- *** CANNOT HAPPEN ***
// 2. 0 !0 0 removing only element
// 3. 0 !0 !0 removing first element
// 4. !0 0 -- *** NOT FOUND ***
// 5. !0 !0 0 removing from end
// 6. !0 !0 !0 removing from middle
if (curr == NULL) {
// case 1
assert(prev != NULL);
// case 4
return E_NOT_FOUND;
}
// connect predecessor to successor
if (prev != NULL) {
// not the first element
// cases 5 and 6
prev->next = curr->next;
} else {
// removing first element
// cases 2 and 3
queue->head = curr->next;
}
// if this was the last node (cases 2 and 5),
// also need to reset the tail pointer
if (curr->next == NULL) {
// if this was the only entry (2), prev is NULL,
// so this works for that case, too
queue->tail = prev;
}
// unlink current from queue
curr->next = NULL;
// there's a possible consistancy problem here if somehow
// one of the queue pointers is NULL and the other one
// is not NULL
assert1((queue->head == NULL && queue->tail == NULL) ||
(queue->head != NULL && queue->tail != NULL));
return SUCCESS;
}
/**
** Name: pcb_queue_peek
**
** Return the first PCB from the indicated queue, but don't
** remove it from the queue.
**
** @param queue[in] The queue to be used
**
** @return the PCB poiner, or NULL if the queue is empty
*/
pcb_t *pcb_queue_peek(const pcb_queue_t queue)
{
//sanity check
assert1(queue != NULL);
// can't get anything if there's nothing to get!
if (PCB_QUEUE_EMPTY(queue)) {
return NULL;
}
// just return the first entry from the queue
return queue->head;
}
/*
** Scheduler routines
*/
/**
** schedule(pcb)
**
** Schedule the supplied process
**
** @param pcb Pointer to the PCB of the process to be scheduled
*/
void schedule(pcb_t *pcb)
{
// sanity check
assert1(pcb != NULL);
// check for a killed process
if (pcb->state == STATE_KILLED) {
// TODO figure out what to do now
return;
}
// mark it as ready
pcb->state = STATE_READY;
// add it to the ready queue
if (pcb_queue_insert(ready, pcb) != SUCCESS) {
PANIC(0, "schedule insert fail");
}
}
/**
** dispatch()
**
** Select the next process to receive the CPU
*/
void dispatch(void)
{
// verify that there is no current process
assert(current == NULL);
// grab whoever is at the head of the queue
int status = pcb_queue_remove(ready, &current);
if (status != SUCCESS) {
sprint(b256, "dispatch queue remove failed, code %d", status);
PANIC(0, b256);
}
// set the process up for success
current->state = STATE_RUNNING;
current->ticks = QUANTUM_STANDARD;
}
/*
** Debugging/tracing routines
*/
/**
** ctx_dump(msg,context)
**
** Dumps the contents of this process context to the console
**
** @param msg[in] An optional message to print before the dump
** @param c[in] The context to dump out
*/
void ctx_dump(const char *msg, register context_t *c)
{
// first, the message (if there is one)
if (msg) {
cio_puts(msg);
}
// the pointer
cio_printf(" @ %08x: ", (uint32_t)c);
// if it's NULL, why did you bother calling me?
if (c == NULL) {
cio_puts(" NULL???\n");
return;
}
// now, the contents
cio_printf("ss %04x gs %04x fs %04x es %04x ds %04x cs %04x\n",
c->ss & 0xff, c->gs & 0xff, c->fs & 0xff, c->es & 0xff,
c->ds & 0xff, c->cs & 0xff);
cio_printf(" edi %08x esi %08x ebp %08x esp %08x\n", c->edi, c->esi,
c->ebp, c->esp);
cio_printf(" ebx %08x edx %08x ecx %08x eax %08x\n", c->ebx, c->edx,
c->ecx, c->eax);
cio_printf(" vec %08x cod %08x eip %08x eflags %08x\n", c->vector, c->code,
c->eip, c->eflags);
}
/**
** ctx_dump_all(msg)
**
** dump the process context for all active processes
**
** @param msg[in] Optional message to print
*/
void ctx_dump_all(const char *msg)
{
if (msg != NULL) {
cio_puts(msg);
}
int n = 0;
register pcb_t *pcb = ptable;
for (int i = 0; i < N_PROCS; ++i, ++pcb) {
if (pcb->state != STATE_UNUSED) {
++n;
cio_printf("%2d(%d): ", n, pcb->pid);
ctx_dump(NULL, pcb->context);
}
}
}
/**
** pcb_dump(msg,pcb,all)
**
** Dumps the contents of this PCB to the console
**
** @param msg[in] An optional message to print before the dump
** @param pcb[in] The PCB to dump
** @param all[in] Dump all the contents?
*/
void pcb_dump(const char *msg, register pcb_t *pcb, bool_t all)
{
// first, the message (if there is one)
if (msg) {
cio_puts(msg);
}
// the pointer
cio_printf(" @ %08x:", (uint32_t)pcb);
// if it's NULL, why did you bother calling me?
if (pcb == NULL) {
cio_puts(" NULL???\n");
return;
}
cio_printf(" %d %s", pcb->pid,
pcb->state >= N_STATES ? "???" : state_str[pcb->state]);
if (!all) {
// just printing IDs and states on one line
return;
}
// now, the rest of the contents
cio_printf(" %s",
pcb->priority >= N_PRIOS ? "???" : prio_str[pcb->priority]);
cio_printf(" ticks %u xit %d wake %08x\n", pcb->ticks, pcb->exit_status,
pcb->wakeup);
cio_printf(" parent %08x", (uint32_t)pcb->parent);
if (pcb->parent != NULL) {
cio_printf(" (%u)", pcb->parent->pid);
}
cio_printf(" next %08x context %08x pde %08x", (uint32_t)pcb->next,
(uint32_t)pcb->context, (uint32_t)pcb->pdir);
cio_putchar('\n');
}
/**
** pcb_queue_dump(msg,queue,contents)
**
** @param msg[in] Optional message to print
** @param queue[in] The queue to dump
** @param contents[in] Also dump (some) contents?
*/
void pcb_queue_dump(const char *msg, pcb_queue_t queue, bool_t contents)
{
// report on this queue
cio_printf("%s: ", msg);
if (queue == NULL) {
cio_puts("NULL???\n");
return;
}
// first, the basic data
cio_printf("head %08x tail %08x", (uint32_t)queue->head,
(uint32_t)queue->tail);
// next, how the queue is ordered
cio_printf(" order %s\n",
queue->order >= N_ORDERINGS ? "????" : ord_str[queue->order]);
// if there are members in the queue, dump the first few PIDs
if (contents && queue->head != NULL) {
cio_puts(" PIDs: ");
pcb_t *tmp = queue->head;
for (int i = 0; i < 5 && tmp != NULL; ++i, tmp = tmp->next) {
cio_printf(" [%u]", tmp->pid);
}
if (tmp != NULL) {
cio_puts(" ...");
}
cio_putchar('\n');
}
}
/**
** ptable_dump(msg,all)
**
** dump the contents of the "active processes" table
**
** @param msg[in] Optional message to print
** @param all[in] Dump all or only part of the relevant data
*/
void ptable_dump(const char *msg, bool_t all)
{
if (msg) {
cio_puts(msg);
}
cio_putchar(' ');
int used = 0;
int empty = 0;
register pcb_t *pcb = ptable;
for (int i = 0; i < N_PROCS; ++i) {
if (pcb->state == STATE_UNUSED) {
// an empty slot
++empty;
} else {
// a non-empty slot
++used;
// if not dumping everything, add commas if needed
if (!all && used) {
cio_putchar(',');
}
// report the table slot #
cio_printf(" #%d:", i);
// and dump the contents
pcb_dump(NULL, pcb, all);
}
}
// only need this if we're doing one-line output
if (!all) {
cio_putchar('\n');
}
// sanity check - make sure we saw the correct number of table slots
if ((used + empty) != N_PROCS) {
cio_printf("Table size %d, used %d + empty %d = %d???\n", N_PROCS, used,
empty, used + empty);
}
}
/**
** Name: ptable_dump_counts
**
** Prints basic information about the process table (number of
** entries, number with each process state, etc.).
*/
void ptable_dump_counts(void)
{
uint_t nstate[N_STATES] = { 0 };
uint_t unknown = 0;
int n = 0;
pcb_t *ptr = ptable;
while (n < N_PROCS) {
if (ptr->state < 0 || ptr->state >= N_STATES) {
++unknown;
} else {
++nstate[ptr->state];
}
++n;
++ptr;
}
cio_printf("Ptable: %u ***", unknown);
for (n = 0; n < N_STATES; ++n) {
if (nstate[n]) {
cio_printf(" %u %s", nstate[n],
state_str[n] != NULL ? state_str[n] : "???");
}
}
cio_putchar('\n');
}