kern/kernel/drivers/acpi.c
2025-04-16 16:51:25 -04:00

362 lines
7.9 KiB
C

#include "lib/kio.h"
#include <lib.h>
#include <comus/drivers/acpi.h>
#include <comus/asm.h>
#include <comus/memory.h>
#include <stdint.h>
struct acpi_header {
uint32_t signature;
uint32_t length;
uint8_t revision;
uint8_t checksum;
uint8_t oem_id[6];
uint8_t oem_table_id[8];
uint32_t oem_revision;
uint32_t creator_id;
uint32_t creator_revision;
} __attribute__((packed));
// root system descriptor pointer
// ACPI 1.0
struct rsdp {
uint8_t signature[8];
uint8_t checksum;
uint8_t oemid[6];
uint8_t revision;
uint32_t rsdt_addr;
} __attribute__((packed));
// eXtended system descriptor pointer
// ACPI 2.0
struct xsdp {
char signature[8];
uint8_t checksum;
char oemid[6];
uint8_t revision;
uint32_t rsdt_addr;
uint32_t length;
uint64_t xsdt_addr;
uint8_t extendeid_checksum;
uint8_t reserved[3];
} __attribute__((packed));
// root system descriptor table
// ACPI 1.0
struct rsdt {
struct acpi_header h;
uint32_t sdt_pointers[];
} __attribute__((packed));
// eXtended system descriptor table
// ACPI 2.0
struct xsdt {
struct acpi_header h;
uint64_t sdt_pointers[];
} __attribute__((packed));
// generic address structure
struct gas {
uint8_t address_space;
uint8_t bit_width;
uint8_t bit_offset;
uint8_t access_size;
uint64_t address;
};
// differentiated system description table
struct dsdt {
struct acpi_header h;
char s5_addr[];
} __attribute__((packed));
struct apic {
struct acpi_header h;
// todo
} __attribute__((packed));
struct hept {
struct acpi_header h;
// todo
} __attribute__((packed));
struct waet {
struct acpi_header h;
// todo
} __attribute__((packed));
// fixed acpi description table
struct fadt {
struct acpi_header h;
uint32_t firmware_ctrl;
uint32_t dsdt;
// field used in ACPI 1.0; no longer in use, for compatibility only
uint8_t reserved;
uint8_t preferred_power_management_profile;
uint16_t sci_interrupt;
uint32_t smi_command_port;
uint8_t acpi_enable;
uint8_t acpi_disable;
uint8_t s4bios_req;
uint8_t pstate_control;
uint32_t pm1_a_event_block;
uint32_t pm1_b_event_block;
uint32_t pm1_a_control_block;
uint32_t pm1_b_control_block;
uint32_t pm2_control_block;
uint32_t pm_timer_block;
uint32_t gpe0_block;
uint32_t gpe1_block;
uint8_t pm1_event_length;
uint8_t pm1_control_length;
uint8_t pm2_control_length;
uint8_t pm_timer_length;
uint8_t gpe0_length;
uint8_t gpe1_length;
uint8_t gpe1_base;
uint8_t cstate_control;
uint16_t worst_c2_latency;
uint16_t worst_c3_latency;
uint16_t flush_size;
uint16_t flush_stride;
uint8_t duty_offset;
uint8_t duty_width;
uint8_t day_alarm;
uint8_t month_alarm;
uint8_t century;
// reserved in ACPI 1.0; used since ACPI 2.0+
uint16_t boot_architecture_flags;
uint8_t reserved_2;
uint32_t flags;
// 12 byte structure; see below for details
struct gas reset_reg;
uint8_t reset_value;
uint8_t reserved_3[3];
// 64bit pointers - Available on ACPI 2.0+
uint64_t x_firmware_control;
uint64_t x_dsdt;
struct gas x_pm1_a_event_block;
struct gas x_pm1_b_event_block;
struct gas x_pm1_a_control_block;
struct gas x_pm1_b_control_block;
struct gas x_pm2_control_block;
struct gas x_pm_timer_block;
struct gas x_gpe0_block;
struct gas x_gpe1_block;
} __attribute__((packed));
struct acpi_state {
union {
struct xsdt *xsdt;
struct rsdt *rsdt;
} sdt;
struct fadt *fadt;
struct dsdt *dsdt;
struct apic *apic;
struct hept *hept;
struct waet *waet;
uint8_t version;
uint16_t SLP_TYPa;
uint16_t SLP_TYPb;
uint16_t SLP_EN;
uint16_t SCI_EN;
};
/* global state, idk a better way rn */
static struct acpi_state state;
static bool checksum(uint8_t *data, size_t len)
{
unsigned char sum = 0;
for (size_t i = 0; i < len; i++)
sum += data[i];
return sum == 0;
}
static int read_s5_addr(struct dsdt *dsdt)
{
char *s5_addr = dsdt->s5_addr;
int dsdt_len = dsdt->h.length - sizeof(struct acpi_header);
while (0 < dsdt_len--) {
if (memcmp(s5_addr, "_S5_", 4) == 0)
break;
s5_addr++;
}
if (dsdt_len > 0) {
// check for valid AML structure
if ((*(s5_addr - 1) == 0x08 ||
(*(s5_addr - 2) == 0x08 && *(s5_addr - 1) == '\\')) &&
*(s5_addr + 4) == 0x12) {
s5_addr += 5;
s5_addr += ((*s5_addr & 0xC0) >> 6) + 2; // calculate PkgLength size
if (*s5_addr == 0x0A)
s5_addr++; // skip byteprefix
state.SLP_TYPa = *(s5_addr) << 10;
s5_addr++;
if (*s5_addr == 0x0A)
s5_addr++; // skip byteprefix
state.SLP_TYPb = *(s5_addr) << 10;
state.SLP_EN = 1 << 13;
state.SCI_EN = 1;
} else {
return -1;
}
} else {
return -1;
}
return -1;
}
static void acpi_load_table(uint64_t addr);
static void acpi_load_rsdt_tables(struct rsdt *rsdt)
{
int entries = (rsdt->h.length - sizeof(rsdt->h)) / 4;
for (int i = 0; i < entries; i++) {
uint32_t addr = rsdt->sdt_pointers[i];
acpi_load_table(addr);
}
}
static void acpi_load_xsdt_tables(struct xsdt *xsdt)
{
int entries = (xsdt->h.length - sizeof(xsdt->h)) / 8;
for (int i = 0; i < entries; i++) {
uint64_t addr = xsdt->sdt_pointers[i];
acpi_load_table(addr);
}
}
#define SIG_RSDT 0x54445352
#define SIG_XSDT 0x54445358
#define SIG_FACP 0x50434146
#define SIG_DSDT 0x54445344
#define SIG_APIC 0x43495041
#define SIG_HEPT 0x54455048
#define SIG_WAET 0x54454157
static void acpi_handle_table(struct acpi_header *header)
{
switch (header->signature) {
case SIG_RSDT:
state.sdt.rsdt = (struct rsdt *)header;
acpi_load_rsdt_tables(state.sdt.rsdt);
break;
case SIG_XSDT:
state.sdt.xsdt = (struct xsdt *)header;
acpi_load_xsdt_tables(state.sdt.xsdt);
break;
case SIG_FACP:
state.fadt = (struct fadt *)header;
acpi_load_table(state.fadt->dsdt);
break;
case SIG_DSDT:
state.dsdt = (struct dsdt *)header;
read_s5_addr(state.dsdt);
break;
case SIG_APIC:
state.apic = (struct apic *)header;
break;
case SIG_HEPT:
state.hept = (struct hept *)header;
break;
case SIG_WAET:
state.waet = (struct waet *)header;
break;
default:
break;
}
}
static void acpi_load_table(uint64_t addr)
{
struct acpi_header *temp, *mapped;
uint32_t length;
temp = (struct acpi_header *)(uintptr_t)addr;
mapped = kmapaddr(temp, NULL, sizeof(struct acpi_header), 0);
length = mapped->length;
kunmapaddr(mapped);
mapped = kmapaddr(temp, NULL, length, 0);
if (!checksum((uint8_t *)mapped, mapped->length)) {
kunmapaddr(mapped);
return;
}
acpi_handle_table(mapped);
}
void acpi_init(void *rootsdp)
{
memset(&state, 0, sizeof(struct acpi_state));
struct rsdp *rsdp = (struct rsdp *)rootsdp;
if (!checksum((uint8_t *)rsdp, sizeof(struct rsdp))) {
panic("invalid acpi rsdp checksum");
}
if (memcmp(rsdp->signature, "RSD PTR ", 8) != 0) {
panic("invalid acpi rsdp signature: %.*s\n", 8, rsdp->signature);
}
if (rsdp->revision == 0) {
state.version = 0;
acpi_load_table(rsdp->rsdt_addr);
} else if (rsdp->revision == 2) {
state.version = 2;
struct xsdp *xsdp = (struct xsdp *)rsdp;
acpi_load_table(xsdp->xsdt_addr);
} else {
panic("invalid acpi rev: %d\n", rsdp->revision);
}
outb(state.fadt->smi_command_port, state.fadt->acpi_enable);
}
void acpi_report(void)
{
if (state.version == 0) {
kprintf("ACPI 1.0\n");
kprintf("%.*s: %#016lx\n", 4, (char *)&state.sdt.rsdt->h.signature,
(uintptr_t)state.sdt.rsdt);
} else {
kprintf("ACPI 2.0\n");
kprintf("%.*s: %#016lx\n", 4, (char *)&state.sdt.xsdt->h.signature,
(uintptr_t)state.sdt.xsdt);
}
if (state.fadt)
kprintf("%.*s: %#016lx\n", 4, (char *)&state.fadt->h.signature,
(uintptr_t)state.fadt);
if (state.dsdt)
kprintf("%.*s: %#016lx\n", 4, (char *)&state.dsdt->h.signature,
(uintptr_t)state.dsdt);
if (state.apic)
kprintf("%.*s: %#016lx\n", 4, (char *)&state.apic->h.signature,
(uintptr_t)state.apic);
if (state.hept)
kprintf("%.*s: %#016lx\n", 4, (char *)&state.hept->h.signature,
(uintptr_t)state.hept);
if (state.waet)
kprintf("%.*s: %#016lx\n", 4, (char *)&state.waet->h.signature,
(uintptr_t)state.waet);
kprintf("\n");
}
void acpi_shutdown(void)
{
outw((unsigned int)state.fadt->pm1_a_control_block,
state.SLP_TYPb | state.SLP_EN);
panic("ACPI shutdown failed");
}