/** ** SCCS ID: @(#)boot.S 2.4 1/22/25 ** ** @file boot.S ** ** @author Jon Coles ** copyleft 1999 Jon Coles ** ** @author Warren R. Carithers, K. Reek, Garrett C. Smith ** @author Walter Litwinczyk, David C. Larsen, Sean T. Congden ** ** Bootstrap routine. ** ** This bootstrap program is loaded by the PC BIOS into memory at ** location 0000:7C00. It must be exactly 512 bytes long, and must ** end with the hex sequence AA55 at location 1FE. ** ** The bootstrap initially sets up a stack in low memory. Next, it ** loads a second sector at 0000:7E00 (immediately following the ** boot block). Then it loads the target program at TARGET_ADDR, ** switches to protected mode, and branches to the target program. ** ** NOTE: To zero out the BSS segment, define CLEAR_BSS when this code ** is assembled. ** ** Must assemble this as 16-bit code. */ .code16 #define ASM_SRC #include <bootstrap.h> #include <x86/bios.h> #include <x86/arch.h> /* ** Symbol for locating the beginning of the code. */ .globl bootentry .text bootentry: /* ** Entry point. Disable interrupts and set up a runtime stack. */ cli movw $BOOT_SEG, %ax /* data seg. base address */ movw %ax, %ds movw %ax, %ss /* also stack seg. base */ movw $BOOT_SP_DISP, %ax movw %ax, %sp /* ** Next, verify that the disk is there and working. */ movb $BD_CHECK, %ah /* test the disk status and make sure */ movb drive, %dl /* it's safe to proceed */ int $BIOS_DISK jnc diskok movw $err_diskstatus, %si /* Something went wrong; print a message */ call dispMsg /* and freeze. */ jmp . /* ** The disk is there. Reset it, and retrieve the disk parameters. */ diskok: movw $BD_RESET, %ax /* Reset the disk */ movb drive, %dl int $BIOS_DISK /* determine number of heads and sectors/track */ xorw %ax, %ax /* set ES:DI = 0000:0000 in case of BIOS bugs */ movw %ax, %es movw %ax, %di movb $BD_PARAMS, %ah /* get drive parameters */ movb drive, %dl /* hard disk or floppy */ int $BIOS_DISK /* store (max + 1) - CL[5:0] = maximum head, DH = maximum head */ andb $0x3F, %cl incb %cl incb %dh movb %cl, max_sec movb %dh, max_head /* ** The disk is OK, so we now need to load the second half of the bootstrap. ** It must immediately follow the boot sector on the disk, and the target ** program(s) must immediately follow that. */ movw $msg_loading, %si /* Print the Loading message */ call dispMsg movw $1, %ax /* sector count = 1 */ movw $BOOT_SEG, %bx /* read this into memory that */ movw %bx, %es /* immediately follows this code. */ movw $PART2_DISP, %bx call readprog /* ** We've got the second block of the bootstrap program in memory. Now ** read all of the user's program blocks. Use %di to point to the ** count field for the next block to load. */ movw $k_sect, %di pushw %ds movw (%di), %bx movw $MMAP_SEG, %ax movw %ax, %ds movw %bx, MMAP_SECTORS /* store kernel image size */ popw %ds /* ** Each target program has three values in the array at the end of the ** second half of the bootstrap: the offset and segment base address ** where the program should go, and the sector count. */ nextblock: movw (%di), %ax /* get the # of sectors */ testw %ax, %ax /* is it zero? */ jz done_loading /* yes, nothing more to load. */ subw $2, %di movw (%di), %bx /* get the segment value */ movw %bx, %es /* and copy it to %es */ subw $2, %di movw (%di), %bx /* get the address offset */ subw $2, %di pushw %di /* save di */ call readprog /* read this program block, */ popw %di /* and restore di */ jmp nextblock /* then go back and read the next one. */ /* ** Read one complete program block into memory. ** ** ax: number of sectors to read ** es:bx = starting address for the block */ readprog: pushw %ax /* save sector count */ movw $3, %cx /* initial retry count is 3 */ retry: pushw %cx /* push the retry count on the stack. */ movw sec, %cx /* get sector number */ movw head, %dx /* get head number */ movb drive, %dl movw $BD_READ1, %ax /* read 1 sector */ int $BIOS_DISK jnc readcont /* jmp if it worked ok */ movw $err_diskread, %si /* report the error */ call dispMsg popw %cx /* get the retry count back */ loop retry /* and go try again. */ movw $err_diskfail, %si /* can't proceed, */ call dispMsg /* print message and freeze. */ jmp . readcont: movw $msg_dot, %si /* print status: a dot */ call dispMsg cmpw $OFFSET_LIMIT, %bx /* have we reached the offset limit? */ je adjust /* Yes--must adjust the es register */ addw $SECTOR_SIZE, %bx /* No--just adjust the block size to */ jmp readcont2 /* the offset and continue. */ adjust: movw $0, %bx /* start offset over again */ movw %es, %ax addw $0x1000,%ax /* move segment pointer to next chunk */ movw %ax, %es readcont2: incb %cl /* not done - move to the next sector */ cmpb max_sec, %cl /* see if we need */ jnz save_sector /* to switch heads or tracks */ movb $1, %cl /* reset sector number */ incb %dh /* first, switch heads */ cmpb max_head, %dh /* there are only two - if we've already */ jnz save_sector /* used both, we need to switch tracks */ xorb %dh, %dh /* reset to head 0 */ incb %ch /* inc track number */ cmpb $80, %ch /* 80 tracks per side - have we read all? */ jnz save_sector /* read another track */ movw $err_toobig, %si /* report the error */ call dispMsg jmp . /* and freeze */ save_sector: movw %cx, sec /* save sector number */ movw %dx, head /* and head number */ popw %ax /* discard the retry count */ popw %ax /* get the sector count from the stack */ decw %ax /* and decrement it. */ jg readprog /* If it is zero, we're done reading. */ readdone: movw $msg_bar, %si /* print message saying this block is done */ call dispMsg ret /* and return to the caller */ /* ** We've loaded the whole target program into memory, ** so it's time to transfer to the startup code. */ done_loading: movw $msg_go, %si /* last status message */ call dispMsg jmp switch /* move to the next phase */ /* ** Support routine - display a message byte by byte to the monitor. */ dispMsg: pushw %ax pushw %bx repeat: lodsb /* grab next character */ movb $BV_W_ADV, %ah /* write and advance cursor */ movw $0x07, %bx /* page 0, white on blank, no blink */ orb %al, %al /* AL is character to write */ jz getOut /* if we've reached the NUL, get out */ int $BIOS_VIDEO /* otherwise, print and repeat */ jmp repeat getOut: /* we're done, so return */ popw %bx popw %ax ret /* ** Support routine - move the GDT entries from where they are to ** location 0050:0000. We need to add BOOT_ADDR because the bootstrap ** is linked at 0, but loaded at 0x7c00. */ move_gdt: movw %cs, %si movw %si, %ds movw $start_gdt + BOOT_ADDR, %si movw $GDT_SEG, %di movw %di, %es xorw %di, %di movl $gdt_len, %ecx cld rep movsb ret /* ** DATA AREAS. ** ** Next sector number and head number to read from. */ sec: .word 2 /* cylinder=0, sector=1 */ head: .word 0 /* head=0 */ max_sec: .byte 19 /* up to 18 sectors per floppy track */ max_head: .byte 2 /* only two r/w heads per floppy drive */ /* ** Status and error messages. */ msg_loading: .asciz "Loading" msg_dot: .asciz "." msg_go: .asciz "done." msg_bar: .asciz "|" /* ** Error messages. */ err_diskstatus: .asciz "Disk not ready.\n\r" err_diskread: .asciz "Read failed\n\r" err_toobig: .asciz "Too big\n\r" err_diskfail: .asciz "Can't proceed\n\r" /* ** Data areas. */ /* ** The GDTR and IDTR contents. */ gdt_48: .word 0x2000 /* 1024 GDT entries x 8 bytes/entry = 8192 */ .quad GDT_ADDR idt_48: .word 0x0800 /* 256 interrupts */ .quad IDT_ADDR /* ** Depending on the age of the BIOS, it may expect there to be a ** partition table for the hard drive you're booting from at this point ** in the boot sector; only the first 446 bytes (0x000-0x1bd) can be ** used for bootstrap code/data. To make life easy, we'll just skip ** over the rest of the sector. ** ** Note: when booting from floppy, this isn't a problem, because floppy ** disks don't have partition tables. On some machines, USB-type storage ** devices are treated as floppies, so they also don't have partition ** maps; however, on other systems, USB storage is treated as hard disk ** storage. */ /* ** End of the first sector of the boot program. The last two bytes ** of this sector must be AA55 in order for the disk to be recognized ** by the BIOS as bootable. */ .org SECTOR_SIZE-4 drive: .word BDEV /* 0x00 = floppy, 0x80 = usb */ boot_sig: .word 0xAA55 /******************************************************* ******* BEGINNING OF SECTOR TWO OF THE BOOTSTRAP ******* *******************************************************/ /* ** This code configures the GDT, enters protected mode, and then ** transfers to the OS entry point. */ switch: cli movb $NMI_DISABLE, %al /* also disable NMIs */ outb %al, $CMOS_ADDR #ifdef USE_FLOPPY call floppy_off #endif call enable_A20 call move_gdt #ifdef GET_MMAP call check_memory #endif /* ** Get the memory address for the "user blob" out of the table ** at the end of this sector, and pass the three values to the ** protected mode code in %bx, %cx, and %dx. We could figure out ** how to find it from there, but this is easier. */ # movw u_off+BOOT_ADDR, %bx # movw u_seg+BOOT_ADDR, %cx # movw u_sect+BOOT_ADDR, %dx /* ** The IDTR and GDTR are loaded relative to this segment, so we must ** use the full offsets from the beginning of the segment (0000:0000); ** however, we were loaded at 0000:7c00, so we need to add that in. */ lidt idt_48 + BOOT_ADDR lgdt gdt_48 + BOOT_ADDR movl %cr0, %eax /* get current CR0 */ orl $1, %eax /* set the PE bit */ movl %eax, %cr0 /* and store it back. */ /* ** We'll be in protected mode at the start of the user's code ** right after this jump executes. ** ** First, a byte to force 32-bit mode execution, followed by ** a 32-bit long jump. The long ("far") jump loads both EIP ** and CS with the proper values so that when we land at the ** destination address in protected mode, the next instruction ** fetch doesn't cause a fault. ** ** The old code for this: ** ** .byte 0x66, 0xEA ** .long TARGET_ADDR ** .word GDT_CODE */ .byte 0x66 .code32 ljmp $GDT_CODE, $TARGET_ADDR .code16 /* ** Supporting functions. */ #ifdef USE_FLOPPY /* ** Turn off the motor on the floppy disk drive. */ floppy_off: push %dx movw $0x3f2, %dx xorb %al, %al outb %al, %dx pop %dx ret #endif /* ** Enable the A20 gate for full memory access. */ enable_A20: call a20wait movb $KBD_P1_DISABLE, %al outb %al, $KBD_CMD call a20wait movb $KBD_RD_OPORT, %al outb %al, $KBD_CMD call a20wait2 inb $KBD_DATA, %al pushl %eax call a20wait movb $KBD_WT_OPORT, %al outb %al, $KBD_CMD call a20wait popl %eax orb $2, %al outb %al, $KBD_DATA call a20wait mov $KBD_P1_ENABLE, %al out %al, $KBD_CMD call a20wait ret a20wait: /* wait until bit 1 of the device register is clear */ movl $65536, %ecx /* loop a lot if need be */ wait_loop: inb $KBD_STAT, %al /* grab the byte */ test $2, %al /* is the bit clear? */ jz wait_exit /* yes */ loop wait_loop /* no, so loop */ jmp a20wait /* if still not clear, go again */ wait_exit: ret a20wait2: /* like a20wait, but waits until bit 0 is set. */ mov $65536, %ecx wait2_loop: in $KBD_STAT, %al test $1, %al jnz wait2_exit loop wait2_loop jmp a20wait2 wait2_exit: ret #ifdef GET_MMAP /* ** Query the BIOS to get the list of usable memory regions ** ** Adapted from: http://wiki.osdev.org/Detecting_Memory_%28x86%29 ** (see section "BIOS Function INT 0x15. EAX = 0xE820") ** ** After the first 'int', if the location 0x2D00 (4 bytes) contains -1, ** then this method failed to detect memory properly; otherwise, this ** location contains the number of elements read. ** ** The start of the array is at 0x2D04. The elements are tightly ** packed following the layout as defined below. Each entry in the ** array contains the following information: ** ** uint64_t base address of region ** uint64_t length of region (0 --> ignore the entry) ** uint32_t type of region ** uint32_t ACIP 3.0 Extended Attributes ** ** The C struct definition is as follows: ** ** struct MemMapEntry ** { ** uint32_t base[2]; // 64-bit base address ** uint32_t length[2]; // 64-bit length ** uint32_t type; // 32-bit region type ** uint32_t ACPI; // 32-bit ACPI "extended attributes" bitfield ** }; ** ** This structure must be packed in memory. This shouldn't be a problem, ** but if it is, you may need to add this attribute at the end of the ** struct declaration before the semicolon: ** ** __attribute__((packed)) ** ** Parameters: ** None **/ check_memory: // save everything // pushaw won't work here because we're still in real mode pushw %ds pushw %es pushw %ax pushw %bx pushw %cx pushw %dx pushw %si pushw %di // Set the start of the buffer movw $MMAP_SEG, %bx // 0x2D0 mov %bx, %ds // Data segment now starts at 0x2D00 mov %bx, %es // Extended segment also starts at 0x2D00 // Reserve the first 4 bytes for the # of entries movw $0x4, %di // Make a valid ACPI 3.X entry movw $1, %es:20(%di) xorw %bp, %bp // Count of entries in the list xorl %ebx, %ebx // EBX must contain zeroes movl $MMAP_MAGIC_NUM, %edx // Magic number into EDX movl $MMAP_CODE, %eax // E820 memory command movl $MMAP_ENT, %ecx // Ask the BIOS for 24 bytes int $BIOS_MISC // Call the BIOS // check for success jc cm_failed // C == 1 --> failure movl $MMAP_MAGIC_NUM, %edx // sometimes EDX changes cmpl %eax, %edx // EAX should equal EDX after the call jne cm_failed testl %ebx, %ebx // Should have at least one more entry je cm_failed jmp cm_jumpin // Good to go - start us off cm_loop: movl $MMAP_CODE, %eax // Reset our registers movw $1, 20(%di) movl $MMAP_ENT, %ecx int $BIOS_MISC jc cm_end_of_list // C == 1 --> end of list movl $MMAP_MAGIC_NUM, %edx cm_jumpin: jcxz cm_skip_entry // Did we get any data? cmp $20, %cl // Check the byte count jbe cm_no_text // Skip the next test if only 20 bytes testb $1, %es:20(%di) // Check the "ignore this entry" flag je cm_skip_entry cm_no_text: mov %es:8(%di), %ecx // lower half of length or %es:12(%di), %ecx // now, full length jz cm_skip_entry inc %bp // one more valid entry // make sure we don't overflow our space cmpw $MMAP_MAX_ENTS, %bp jge cm_end_of_list // we're ok - move the pointer to the next struct in the array add $24, %di cm_skip_entry: // are there more entries to retrieve? testl %ebx, %ebx jne cm_loop cm_end_of_list: // All done! Store the number of elements in 0x2D00 movw %bp, %ds:0x0 clc // Clear the carry bit and return jmp cm_ret cm_failed: movl $-1, %ds:0x0 // indicate failure stc cm_ret: // restore everything we saved // popaw won't work here (still in real mode!) popw %di popw %si popw %dx popw %cx popw %bx popw %ax popw %es popw %ds ret #endif /* ** The GDT. This cannot be created in C because the bootstrap is not ** linked with that code. We could just have a simple "dummy" GDT here ** but that would only save us a couple of entries. Also, we could save ** some space by not having the separate 'linear' and 'stack' entries ** (they're identical to the 'data' entry). */ .p2align 2 // force 4-byte alignment start_gdt: // selector 0x0000 is unused SEGNULL // selector 0x0008 - basic linear access to all of memory SEGMENT( 0x0, 0xffffffff, SEG_DPL_0, SEG_DATA_RW ) // selector 0x0010 - kernel code segment SEGMENT( 0x0, 0xffffffff, SEG_DPL_0, SEG_CODE_XR ) // selector 0x0018 - kernel data segment SEGMENT( 0x0, 0xffffffff, SEG_DPL_0, SEG_DATA_RW ) // selector 0x0020 - kernel stack segment SEGMENT( 0x0, 0xffffffff, SEG_DPL_0, SEG_DATA_RW ) // could put additional entries here for user mode - e.g., // 0x0028 code: SEGMENT( 0x0, 0xffffffff, SEG_DPL_3, SEG_CODE_XR ) // 0x0030 data: SEGMENT( 0x0, 0xffffffff, SEG_DPL_3, SEG_DATA_RW ) // 0x0038 stack: SEGMENT( 0x0, 0xffffffff, SEG_DPL_3, SEG_DATA_RW ) end_gdt: gdt_len = end_gdt - start_gdt /* ** The end of this program will contain a list of the sizes and load ** addresses of all of the blocks to be loaded. These values are ** inserted here by the BuildImage program, which checks that there are ** not so many blocks that the GDT would be overwritten. The layout ** of the data is: ** ** struct info_s { ** short offset; ** short segment; ** short sectors; ** }; ** ** with the data for the first program at k_off, k_seg, and k_sect. ** If additional blocks are to be loaded, their values appear just ** before the previous set. */ .org BOOT_SIZE-12 u_off: .word 0 // the "user blob" u_seg: .word 0 u_sect: .word 0 k_off: .word 0 // the kernel k_seg: .word 0 k_sect: .word 0