1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
|
#include <comus/cpu.h>
#include <comus/syscalls.h>
#include <comus/drivers/acpi.h>
#include <comus/drivers/gpu.h>
#include <comus/drivers/pit.h>
#include <comus/memory.h>
#include <comus/procs.h>
#include <comus/time.h>
#include <lib.h>
static struct pcb *pcb;
#define RET(type, name) type *name = (type *)(&pcb->regs->rax)
#define ARG1(type, name) type name = (type)(pcb->regs->rdi)
#define ARG2(type, name) type name = (type)(pcb->regs->rsi)
#define ARG3(type, name) type name = (type)(pcb->regs->rdx)
#define ARG4(type, name) type name = (type)(pcb->regs->rcx)
__attribute__((noreturn)) static int sys_exit(void)
{
ARG1(int, status);
pcb->exit_status = status;
pcb_zombify(pcb);
// call next process
dispatch();
}
static int sys_waitpid(void)
{
// arguments are read later
// by procs.c
pcb->state = PROC_STATE_WAITING;
pcb_queue_insert(waiting, pcb);
// call next process
dispatch();
}
static int sys_write(void)
{
ARG1(int, fd);
ARG2(const void *, buffer);
ARG3(size_t, nbytes);
const char *map_buf = kmapuseraddr(pcb->memctx, buffer, nbytes);
if (map_buf == NULL)
return 0;
// cannot write to stdin
if (fd == 0)
nbytes = 0;
// write to stdout
else if (fd == 1) {
for (size_t i = 0; i < nbytes; i++)
kputc(map_buf[i]);
}
// files
else {
// TODO: write to files
nbytes = 0;
}
kunmapaddr(map_buf);
return nbytes;
}
static int sys_getpid(void)
{
return pcb->pid;
}
static int sys_getppid(void)
{
// init's parent is itself
if (pcb->parent == NULL)
return init_pcb->pid;
return pcb->parent->pid;
}
static int sys_gettime(void)
{
RET(unsigned long, time);
*time = unixtime();
return 0;
}
static int sys_getprio(void)
{
RET(unsigned int, prio);
*prio = pcb->priority;
return 0;
}
static int sys_setprio(void)
{
RET(unsigned int, old);
ARG1(unsigned int, new);
*old = pcb->priority;
pcb->priority = new;
return 0;
}
static int sys_kill(void)
{
ARG1(pid_t, pid);
struct pcb *victim, *parent;
victim = pcb_find_pid(pid);
// pid does not exist
if (victim == NULL)
return 1;
parent = victim;
while (parent) {
if (parent->pid == pcb->pid)
break;
parent = parent->parent;
}
// we do not own this pid
if (parent == NULL)
return 1;
switch (victim->state) {
case PROC_STATE_KILLED:
case PROC_STATE_ZOMBIE:
// you can't kill it if it's already dead
return 0;
case PROC_STATE_READY:
case PROC_STATE_SLEEPING:
case PROC_STATE_BLOCKED:
// here, the process is on a queue somewhere; mark
// it as "killed", and let the scheduler deal with it
victim->state = PROC_STATE_KILLED;
return 0;
case PROC_STATE_RUNNING:
// we have met the enemy, and it is us!
pcb->exit_status = 1;
pcb_zombify(pcb);
// we need a new current process
dispatch();
break;
case PROC_STATE_WAITING:
// similar to the 'running' state, but we don't need
// to dispatch a new process
victim->exit_status = 1;
pcb_queue_remove(waiting, pcb);
pcb_zombify(victim);
break;
default:
// cannot kill a previable process
return 1;
}
return 0;
}
static int sys_sleep(void)
{
RET(int, ret);
ARG1(unsigned long, ms);
if (ms == 0) {
*ret = 0;
schedule(pcb);
dispatch();
}
pcb->wakeup = ticks + ms;
if (pcb_queue_insert(sleeping, pcb)) {
WARN("sleep pcb insert failed");
return 1;
}
// calling pcb is in sleeping queue,
// we must call a new one
dispatch();
}
__attribute__((noreturn)) static int sys_poweroff(void)
{
// TODO: we should probably
// kill all user processes
// and then sync the fs
acpi_shutdown();
}
static int sys_drm(void)
{
ARG1(void **, res_fb);
ARG2(int *, res_width);
ARG3(int *, res_height);
ARG4(int *, res_bpp);
void *pADDR, *vADDR;
int width, height, bpp;
size_t len;
if (gpu_dev == NULL)
return 1;
len = gpu_dev->width * gpu_dev->height * gpu_dev->bit_depth / 8;
pADDR =
mem_get_phys(kernel_mem_ctx, (void *)(uintptr_t)gpu_dev->framebuffer);
if (pADDR == NULL)
return 1;
vADDR = mem_mapaddr(pcb->memctx, pADDR, (void *)0x1000000000, len,
F_PRESENT | F_WRITEABLE | F_UNPRIVILEGED);
if (vADDR == NULL)
return 1;
width = gpu_dev->width;
height = gpu_dev->height;
bpp = gpu_dev->bit_depth;
mem_ctx_switch(pcb->memctx);
*res_fb = vADDR;
*res_width = width;
*res_height = height;
*res_bpp = bpp;
mem_ctx_switch(kernel_mem_ctx);
return 0;
}
static int sys_ticks(void)
{
RET(uint64_t, res_ticks);
*res_ticks = ticks;
return 0;
}
static int (*syscall_tbl[N_SYSCALLS])(void) = {
[SYS_exit] = sys_exit, [SYS_waitpid] = sys_waitpid,
[SYS_fork] = NULL, [SYS_exec] = NULL,
[SYS_open] = NULL, [SYS_close] = NULL,
[SYS_read] = NULL, [SYS_write] = sys_write,
[SYS_getpid] = sys_getpid, [SYS_getppid] = sys_getppid,
[SYS_gettime] = sys_gettime, [SYS_getprio] = sys_getprio,
[SYS_setprio] = sys_setprio, [SYS_kill] = sys_kill,
[SYS_sleep] = sys_sleep, [SYS_brk] = NULL,
[SYS_sbrk] = NULL, [SYS_poweroff] = sys_poweroff,
[SYS_drm] = sys_drm, [SYS_ticks] = sys_ticks,
};
void syscall_handler(struct cpu_regs *regs)
{
uint64_t num;
int (*handler)(void);
int ret = 1;
// make sure were in the kernel memory context
mem_ctx_switch(kernel_mem_ctx);
// update data
pcb = current_pcb;
pcb->regs = regs;
num = pcb->regs->rax;
pcb->regs->rax = 0;
current_pcb = NULL;
// check for invalid syscall
if (num >= N_SYSCALLS) {
// kill process
pcb->exit_status = 1;
pcb_zombify(pcb);
// call next process
dispatch();
}
// run syscall handler
handler = syscall_tbl[num];
if (handler != NULL)
ret = handler();
// on failure, set rax
if (ret)
pcb->regs->rax = ret;
// return to current pcb
current_pcb = pcb;
}
|