/* ** @file procs.c ** ** @author CSCI-452 class of 20245 ** ** @brief Process-related implementations */ #define KERNEL_SRC #include #include #include /* ** PRIVATE DEFINITIONS */ // determine if a queue is empty; assumes 'q' is a valid pointer #define PCB_QUEUE_EMPTY(q) ((q)->head == NULL) /* ** PRIVATE DATA TYPES */ /* ** PCB Queue structure ** ** Opaque to the rest of the kernel ** ** Typedef'd in the header: typedef struct pcb_queue_s *pcb_queue_t; */ struct pcb_queue_s { pcb_t *head; pcb_t *tail; enum pcb_queue_order_e order; }; /* ** PRIVATE GLOBAL VARIABLES */ // collection of queues static struct pcb_queue_s pcb_freelist_queue; static struct pcb_queue_s ready_queue; static struct pcb_queue_s waiting_queue; static struct pcb_queue_s sleeping_queue; static struct pcb_queue_s zombie_queue; static struct pcb_queue_s sioread_queue; /* ** PUBLIC GLOBAL VARIABLES */ // public-facing queue handles pcb_queue_t pcb_freelist; pcb_queue_t ready; pcb_queue_t waiting; pcb_queue_t sleeping; pcb_queue_t zombie; pcb_queue_t sioread; // pointer to the currently-running process pcb_t *current; // the process table pcb_t ptable[N_PROCS]; // next available PID uint_t next_pid; // pointer to the PCB for the 'init' process pcb_t *init_pcb; // table of state name strings const char *state_str[N_STATES] = { [ STATE_UNUSED ] = "Unu", // "Unused" [ STATE_NEW ] = "New", [ STATE_READY ] = "Rdy", // "Ready" [ STATE_RUNNING ] = "Run", // "Running" [ STATE_SLEEPING ] = "Slp", // "Sleeping" [ STATE_BLOCKED ] = "Blk", // "Blocked" [ STATE_WAITING ] = "Wat", // "Waiting" [ STATE_KILLED ] = "Kil", // "Killed" [ STATE_ZOMBIE ] = "Zom" // "Zombie" }; // table of priority name strings const char *prio_str[N_PRIOS] = { [ PRIO_HIGH ] = "High", [ PRIO_STD ] = "User", [ PRIO_LOW ] = "Low ", [ PRIO_DEFERRED ] = "Def " }; // table of queue ordering name strings const char *ord_str[N_PRIOS] = { [ O_FIFO ] = "FIFO", [ O_PRIO ] = "PRIO", [ O_PID ] = "PID ", [ O_WAKEUP ] = "WAKE" }; /* ** PRIVATE FUNCTIONS */ /** ** Priority search functions. These are used to traverse a supplied ** queue looking for the queue entry that would precede the supplied ** PCB when that PCB is inserted into the queue. ** ** Variations: ** find_prev_wakeup() compares wakeup times ** find_prev_priority() compares process priorities ** find_prev_pid() compares PIDs ** ** Each assumes the queue should be in ascending order by the specified ** comparison value. ** ** @param[in] queue The queue to search ** @param[in] pcb The PCB to look for ** ** @return a pointer to the predecessor in the queue, or NULL if ** this PCB would be at the beginning of the queue. */ static pcb_t *find_prev_wakeup( pcb_queue_t queue, pcb_t *pcb ) { // sanity checks! assert1( queue != NULL ); assert1( pcb != NULL ); pcb_t *prev = NULL; pcb_t *curr = queue->head; while( curr != NULL && curr->wakeup <= pcb->wakeup ) { prev = curr; curr = curr->next; } return prev; } static pcb_t *find_prev_priority( pcb_queue_t queue, pcb_t *pcb ) { // sanity checks! assert1( queue != NULL ); assert1( pcb != NULL ); pcb_t *prev = NULL; pcb_t *curr = queue->head; while( curr != NULL && curr->priority <= pcb->priority ) { prev = curr; curr = curr->next; } return prev; } static pcb_t *find_prev_pid( pcb_queue_t queue, pcb_t *pcb ) { // sanity checks! assert1( queue != NULL ); assert1( pcb != NULL ); pcb_t *prev = NULL; pcb_t *curr = queue->head; while( curr != NULL && curr->pid <= pcb->pid ) { prev = curr; curr = curr->next; } return prev; } /* ** PUBLIC FUNCTIONS */ // a macro to simplify queue setup #define QINIT(q,s) \ q = &q##_queue; \ if( pcb_queue_reset(q,s) != SUCCESS ) { \ PANIC( 0, "pcb_init can't reset " # q ); \ } /** ** Name: pcb_init ** ** Initialization for the Process module. */ void pcb_init( void ) { #if TRACING_INIT cio_puts( " Procs" ); #endif // there is no current process current = NULL; // set up the external links to the queues QINIT( pcb_freelist, O_FIFO ); QINIT( ready, O_PRIO ); QINIT( waiting, O_PID ); QINIT( sleeping, O_WAKEUP ); QINIT( zombie, O_PID ); QINIT( sioread, O_FIFO ); /* ** We statically allocate our PCBs, so we need to add them ** to the freelist before we can use them. If this changes ** so that we dynamicallyl allocate PCBs, this step either ** won't be required, or could be used to pre-allocate some ** number of PCB structures for future use. */ pcb_t *ptr = ptable; for( int i = 0; i < N_PROCS; ++i ) { pcb_free( ptr ); ++ptr; } } /** ** Name: pcb_alloc ** ** Allocate a PCB from the list of free PCBs. ** ** @param pcb Pointer to a pcb_t * where the PCB pointer will be returned. ** ** @return status of the allocation attempt */ int pcb_alloc( pcb_t **pcb ) { // sanity check! assert1( pcb != NULL ); // remove the first PCB from the free list pcb_t *tmp; if( pcb_queue_remove(pcb_freelist,&tmp) != SUCCESS ) { return E_NO_PCBS; } *pcb = tmp; return SUCCESS; } /** ** Name: pcb_free ** ** Return a PCB to the list of free PCBs. ** ** @param pcb Pointer to the PCB to be deallocated. */ void pcb_free( pcb_t *pcb ) { if( pcb != NULL ) { // mark the PCB as available pcb->state = STATE_UNUSED; // add it to the free list int status = pcb_queue_insert( pcb_freelist, pcb ); // if that failed, we're in trouble if( status != SUCCESS ) { sprint( b256, "pcb_free(0x%08x) status %d", (uint32_t) pcb, status ); PANIC( 0, b256 ); } } } /** ** Name: pcb_zombify ** ** Turn the indicated process into a Zombie. This function ** does most of the real work for exit() and kill() calls. ** Is also called from the scheduler and dispatcher. ** ** @param pcb Pointer to the newly-undead PCB */ void pcb_zombify( register pcb_t *victim ) { // should this be an error? if( victim == NULL ) { return; } // every process must have a parent, even if it's 'init' assert( victim->parent != NULL ); /* ** We need to locate the parent of this process. We also need ** to reparent any children of this process. We do these in ** a single loop. */ pcb_t *parent = victim->parent; pcb_t *zchild = NULL; // two PIDs we will look for uint_t vicpid = victim->pid; // speed up access to the process table entries register pcb_t *curr = ptable; for( int i = 0; i < N_PROCS; ++i, ++curr ) { // make sure this is a valid entry if( curr->state == STATE_UNUSED ) { continue; } // if this is our parent, just keep going - we continue // iterating to find all the children of this process. if( curr == parent ) { continue; } if( curr->parent == victim ) { // found a child - reparent it curr->parent = init_pcb; // see if this child is already undead if( curr->state == STATE_ZOMBIE ) { // if it's already a zombie, remember it, so we // can pass it on to 'init'; also, if there are // two or more zombie children, it doesn't matter // which one we pick here, as the others will be // collected when 'init' loops zchild = curr; } } } /* ** If we found a child that was already terminated, we need to ** wake up the init process if it's already waiting. ** ** Note: we only need to do this for one Zombie child process - ** init will loop and collect the others after it finishes with ** this one. ** ** Also note: it's possible that the exiting process' parent is ** also init, which means we're letting one of zombie children ** of the exiting process be cleaned up by init before the ** existing process itself is cleaned up by init. This will work, ** because after init cleans up the zombie, it will loop and ** call waitpid() again, by which time this exiting process will ** be marked as a zombie. */ if( zchild != NULL && init_pcb->state == STATE_WAITING ) { // dequeue the zombie assert( pcb_queue_remove_this(zombie,zchild) == SUCCESS ); assert( pcb_queue_remove_this(waiting,init_pcb) == SUCCESS ); // intrinsic return value is the PID RET(init_pcb) = zchild->pid; // may also want to return the exit status int32_t *ptr = (int32_t *) ARG(init_pcb,2); if( ptr != NULL ) { // ******************************************************** // ** Potential VM issue here! This code assigns the exit // ** status into a variable in the parent's address space. // ** This works in the baseline because we aren't using // ** any type of memory protection. If address space // ** separation is implemented, this code will very likely // ** STOP WORKING, and will need to be fixed. // ******************************************************** *ptr = zchild->exit_status; } // all done - schedule 'init', and clean up the zombie schedule( init_pcb ); pcb_cleanup( zchild ); } /* ** Now, deal with the parent of this process. If the parent is ** already waiting, just wake it up and clean up this process. ** Otherwise, this process becomes a zombie. ** ** Note: if the exiting process' parent is init and we just woke ** init up to deal with a zombie child of the exiting process, ** init's status won't be Waiting any more, so we don't have to ** worry about it being scheduled twice. */ if( parent->state == STATE_WAITING ) { // verify that the parent is either waiting for this process // or is waiting for any of its children uint32_t target = ARG(parent,1); if( target == 0 || target == vicpid ) { // the parent is waiting for this child or is waiting // for any of its children, so we can wake it up. // intrinsic return value is the PID RET(parent) = vicpid; // may also want to return the exit status int32_t *ptr = (int32_t *) ARG(parent,2); if( ptr != NULL ) { // ******************************************************** // ** Potential VM issue here! This code assigns the exit // ** status into a variable in the parent's address space. // ** This works in the baseline because we aren't using // ** any type of memory protection. If address space // ** separation is implemented, this code will very likely // ** STOP WORKING, and will need to be fixed. // ******************************************************** *ptr = victim->exit_status; } // all done - schedule the parent, and clean up the zombie schedule( parent ); pcb_cleanup( victim ); return; } } /* ** The parent isn't waiting OR is waiting for a specific child ** that isn't this exiting process, so we become a Zombie. ** ** This code assumes that Zombie processes are *not* in ** a queue, but instead are just in the process table with ** a state of 'Zombie'. This simplifies life immensely, ** because we won't need to dequeue it when it is collected ** by its parent. */ victim->state = STATE_ZOMBIE; assert( pcb_queue_insert(zombie,victim) == SUCCESS ); /* ** Note: we don't call _dispatch() here - we leave that for ** the calling routine, as it's possible we don't need to ** choose a new current process. */ } /** ** Name: pcb_cleanup ** ** Reclaim a process' data structures ** ** @param pcb The PCB to reclaim */ void pcb_cleanup( pcb_t *pcb ) { #if TRACING_PCB cio_printf( "** pcb_cleanup(0x%08x)\n", (uint32_t) pcb ); #endif // avoid deallocating a NULL pointer if( pcb == NULL ) { // should this be an error? return; } // we need to release all the VM data structures and frames user_cleanup( pcb ); // release the PCB itself pcb_free( pcb ); } /** ** Name: pcb_find_pid ** ** Locate the PCB for the process with the specified PID ** ** @param pid The PID to be located ** ** @return Pointer to the PCB, or NULL */ pcb_t *pcb_find_pid( uint_t pid ) { // must be a valid PID if( pid < 1 ) { return NULL; } // scan the process table pcb_t *p = ptable; for( int i = 0; i < N_PROCS; ++i, ++p ) { if( p->pid == pid && p->state != STATE_UNUSED ) { return p; } } // didn't find it! return NULL; } /** ** Name: pcb_find_ppid ** ** Locate the PCB for the process with the specified parent ** ** @param pid The PID to be located ** ** @return Pointer to the PCB, or NULL */ pcb_t *pcb_find_ppid( uint_t pid ) { // must be a valid PID if( pid < 1 ) { return NULL; } // scan the process table pcb_t *p = ptable; for( int i = 0; i < N_PROCS; ++i, ++p ) { assert1( p->parent != NULL ); if( p->parent->pid == pid && p->parent->state != STATE_UNUSED ) { return p; } } // didn't find it! return NULL; } /** ** Name: pcb_queue_reset ** ** Initialize a PCB queue. We assume that whatever data may be ** in the queue structure can be overwritten. ** ** @param queue[out] The queue to be initialized ** @param order[in] The desired ordering for the queue ** ** @return status of the init request */ int pcb_queue_reset( pcb_queue_t queue, enum pcb_queue_order_e style ) { // sanity check assert1( queue != NULL ); // make sure the style is valid if( style < O_FIRST_STYLE || style > O_LAST_STYLE ) { return E_BAD_PARAM; } // reset the queue queue->head = queue->tail = NULL; queue->order = style; return SUCCESS; } /** ** Name: pcb_queue_empty ** ** Determine whether a queue is empty. Essentially just a wrapper ** for the PCB_QUEUE_EMPTY() macro, for use outside this module. ** ** @param[in] queue The queue to check ** ** @return true if the queue is empty, else false */ bool_t pcb_queue_empty( pcb_queue_t queue ) { // if there is no queue, blow up assert1( queue != NULL ); return PCB_QUEUE_EMPTY(queue); } /** ** Name: pcb_queue_length ** ** Return the count of elements in the specified queue. ** ** @param[in] queue The queue to check ** ** @return the count (0 if the queue is empty) */ uint_t pcb_queue_length( const pcb_queue_t queue ) { // sanity check assert1( queue != NULL ); // this is pretty simple register pcb_t *tmp = queue->head; register int num = 0; while( tmp != NULL ) { ++num; tmp = tmp->next; } return num; } /** ** Name: pcb_queue_insert ** ** Inserts a PCB into the indicated queue. ** ** @param queue[in,out] The queue to be used ** @param pcb[in] The PCB to be inserted ** ** @return status of the insertion request */ int pcb_queue_insert( pcb_queue_t queue, pcb_t *pcb ) { // sanity checks assert1( queue != NULL ); assert1( pcb != NULL ); // if this PCB is already in a queue, we won't touch it if( pcb->next != NULL ) { // what to do? we let the caller decide return E_BAD_PARAM; } // is the queue empty? if( queue->head == NULL ) { queue->head = queue->tail = pcb; return SUCCESS; } assert1( queue->tail != NULL ); // no, so we need to search it pcb_t *prev = NULL; // find the predecessor node switch( queue->order ) { case O_FIFO: prev = queue->tail; break; case O_PRIO: prev = find_prev_priority(queue,pcb); break; case O_PID: prev = find_prev_pid(queue,pcb); break; case O_WAKEUP: prev = find_prev_wakeup(queue,pcb); break; default: // do we need something more specific here? return E_BAD_PARAM; } // OK, we found the predecessor node; time to do the insertion if( prev == NULL ) { // there is no predecessor, so we're // inserting at the front of the queue pcb->next = queue->head; if( queue->head == NULL ) { // empty queue!?! - should we panic? queue->tail = pcb; } queue->head = pcb; } else if( prev->next == NULL ) { // append at end prev->next = pcb; queue->tail = pcb; } else { // insert between prev & prev->next pcb->next = prev->next; prev->next = pcb; } return SUCCESS; } /** ** Name: pcb_queue_remove ** ** Remove the first PCB from the indicated queue. ** ** @param queue[in,out] The queue to be used ** @param pcb[out] Pointer to where the PCB pointer will be saved ** ** @return status of the removal request */ int pcb_queue_remove( pcb_queue_t queue, pcb_t **pcb ) { //sanity checks assert1( queue != NULL ); assert1( pcb != NULL ); // can't get anything if there's nothing to get! if( PCB_QUEUE_EMPTY(queue) ) { return E_EMPTY_QUEUE; } // take the first entry from the queue pcb_t *tmp = queue->head; queue->head = tmp->next; // disconnect it completely tmp->next = NULL; // was this the last thing in the queue? if( queue->head == NULL ) { // yes, so clear the tail pointer for consistency queue->tail = NULL; } // save the pointer *pcb = tmp; return SUCCESS; } /** ** Name: pcb_queue_remove_this ** ** Remove the specified PCB from the indicated queue. ** ** We don't return the removed pointer, because the calling ** routine must already have it (because it was supplied ** to us in the call). ** ** @param queue[in,out] The queue to be used ** @param pcb[in] Pointer to the PCB to be removed ** ** @return status of the removal request */ int pcb_queue_remove_this( pcb_queue_t queue, pcb_t *pcb ) { //sanity checks assert1( queue != NULL ); assert1( pcb != NULL ); // can't get anything if there's nothing to get! if( PCB_QUEUE_EMPTY(queue) ) { return E_EMPTY_QUEUE; } // iterate through the queue until we find the desired PCB pcb_t *prev = NULL; pcb_t *curr = queue->head; while( curr != NULL && curr != pcb ) { prev = curr; curr = curr->next; } // case prev curr next interpretation // ==== ==== ==== ==== ============================ // 1. 0 0 -- *** CANNOT HAPPEN *** // 2. 0 !0 0 removing only element // 3. 0 !0 !0 removing first element // 4. !0 0 -- *** NOT FOUND *** // 5. !0 !0 0 removing from end // 6. !0 !0 !0 removing from middle if( curr == NULL ) { // case 1 assert( prev != NULL ); // case 4 return E_NOT_FOUND; } // connect predecessor to successor if( prev != NULL ) { // not the first element // cases 5 and 6 prev->next = curr->next; } else { // removing first element // cases 2 and 3 queue->head = curr->next; } // if this was the last node (cases 2 and 5), // also need to reset the tail pointer if( curr->next == NULL ) { // if this was the only entry (2), prev is NULL, // so this works for that case, too queue->tail = prev; } // unlink current from queue curr->next = NULL; // there's a possible consistancy problem here if somehow // one of the queue pointers is NULL and the other one // is not NULL assert1( (queue->head == NULL && queue->tail == NULL) || (queue->head != NULL && queue->tail != NULL) ); return SUCCESS; } /** ** Name: pcb_queue_peek ** ** Return the first PCB from the indicated queue, but don't ** remove it from the queue. ** ** @param queue[in] The queue to be used ** ** @return the PCB poiner, or NULL if the queue is empty */ pcb_t *pcb_queue_peek( const pcb_queue_t queue ) { //sanity check assert1( queue != NULL ); // can't get anything if there's nothing to get! if( PCB_QUEUE_EMPTY(queue) ) { return NULL; } // just return the first entry from the queue return queue->head; } /* ** Scheduler routines */ /** ** schedule(pcb) ** ** Schedule the supplied process ** ** @param pcb Pointer to the PCB of the process to be scheduled */ void schedule( pcb_t *pcb ) { // sanity check assert1( pcb != NULL ); // check for a killed process if( pcb->state == STATE_KILLED ) { // TODO figure out what to do now return; } // mark it as ready pcb->state = STATE_READY; // add it to the ready queue if( pcb_queue_insert(ready,pcb) != SUCCESS ) { PANIC( 0, "schedule insert fail" ); } } /** ** dispatch() ** ** Select the next process to receive the CPU */ void dispatch( void ) { // verify that there is no current process assert( current == NULL ); // grab whoever is at the head of the queue int status = pcb_queue_remove( ready, ¤t ); if( status != SUCCESS ) { sprint( b256, "dispatch queue remove failed, code %d", status ); PANIC( 0, b256 ); } // set the process up for success current->state = STATE_RUNNING; current->ticks = QUANTUM_STANDARD; } /* ** Debugging/tracing routines */ /** ** ctx_dump(msg,context) ** ** Dumps the contents of this process context to the console ** ** @param msg[in] An optional message to print before the dump ** @param c[in] The context to dump out */ void ctx_dump( const char *msg, register context_t *c ) { // first, the message (if there is one) if( msg ) { cio_puts( msg ); } // the pointer cio_printf( " @ %08x: ", (uint32_t) c ); // if it's NULL, why did you bother calling me? if( c == NULL ) { cio_puts( " NULL???\n" ); return; } // now, the contents cio_printf( "ss %04x gs %04x fs %04x es %04x ds %04x cs %04x\n", c->ss & 0xff, c->gs & 0xff, c->fs & 0xff, c->es & 0xff, c->ds & 0xff, c->cs & 0xff ); cio_printf( " edi %08x esi %08x ebp %08x esp %08x\n", c->edi, c->esi, c->ebp, c->esp ); cio_printf( " ebx %08x edx %08x ecx %08x eax %08x\n", c->ebx, c->edx, c->ecx, c->eax ); cio_printf( " vec %08x cod %08x eip %08x eflags %08x\n", c->vector, c->code, c->eip, c->eflags ); } /** ** ctx_dump_all(msg) ** ** dump the process context for all active processes ** ** @param msg[in] Optional message to print */ void ctx_dump_all( const char *msg ) { if( msg != NULL ) { cio_puts( msg ); } int n = 0; register pcb_t *pcb = ptable; for( int i = 0; i < N_PROCS; ++i, ++pcb ) { if( pcb->state != STATE_UNUSED ) { ++n; cio_printf( "%2d(%d): ", n, pcb->pid ); ctx_dump( NULL, pcb->context ); } } } /** ** _pcb_dump(msg,pcb) ** ** Dumps the contents of this PCB to the console ** ** @param msg[in] An optional message to print before the dump ** @param pcb[in] The PCB to dump ** @param all[in] Dump all the contents? */ void pcb_dump( const char *msg, register pcb_t *pcb, bool_t all ) { // first, the message (if there is one) if( msg ) { cio_puts( msg ); } // the pointer cio_printf( " @ %08x:", (uint32_t) pcb ); // if it's NULL, why did you bother calling me? if( pcb == NULL ) { cio_puts( " NULL???\n" ); return; } cio_printf( " %d", pcb->pid ); cio_printf( " %s", pcb->state >= N_STATES ? "???" : state_str[pcb->state] ); if( !all ) { // just printing IDs and states on one line return; } // now, the rest of the contents cio_printf( " %s", pcb->priority >= N_PRIOS ? "???" : prio_str[pcb->priority] ); cio_printf( " ticks %u xit %d wake %08x\n", pcb->ticks, pcb->exit_status, pcb->wakeup ); cio_printf( " parent %08x", (uint32_t)pcb->parent ); if( pcb->parent != NULL ) { cio_printf( " (%u)", pcb->parent->pid ); } cio_printf( " next %08x context %08x pde %08x", (uint32_t) pcb->next, (uint32_t) pcb->context, (uint32_t) pcb->pdir ); cio_putchar( '\n' ); } /** ** pcb_queue_dump(msg,queue,contents) ** ** Dump the contents of the specified queue to the console ** ** @param msg[in] Optional message to print ** @param queue[in] The queue to dump ** @param contents[in] Also dump (some) contents? */ void pcb_queue_dump( const char *msg, pcb_queue_t queue, bool_t contents ) { // report on this queue cio_printf( "%s: ", msg ); if( queue == NULL ) { cio_puts( "NULL???\n" ); return; } // first, the basic data cio_printf( "head %08x tail %08x", (uint32_t) queue->head, (uint32_t) queue->tail ); // next, how the queue is ordered cio_printf( " order %s\n", queue->order >= N_ORDERINGS ? "????" : ord_str[queue->order] ); // if there are members in the queue, dump the first few PIDs if( contents && queue->head != NULL ) { cio_puts( " PIDs: " ); pcb_t *tmp = queue->head; for( int i = 0; i < 5 && tmp != NULL; ++i, tmp = tmp->next ) { cio_printf( " [%u]", tmp->pid ); } if( tmp != NULL ) { cio_puts( " ..." ); } cio_putchar( '\n' ); } } /** ** ptable_dump(msg,all) ** ** dump the contents of the "active processes" table ** ** @param msg[in] Optional message to print ** @param all[in] Dump all or only part of the relevant data */ void ptable_dump( const char *msg, bool_t all ) { if( msg ) { cio_puts( msg ); } cio_putchar( ' ' ); int used = 0; int empty = 0; register pcb_t *pcb = ptable; for( int i = 0; i < N_PROCS; ++i ) { if( pcb->state == STATE_UNUSED ) { // an empty slot ++empty; } else { // a non-empty slot ++used; // if not dumping everything, add commas if needed if( !all && used ) { cio_putchar( ',' ); } // report the table slot # cio_printf( " #%d:", i ); // and dump the contents pcb_dump( NULL, pcb, all ); } } // only need this if we're doing one-line output if( !all ) { cio_putchar( '\n' ); } // sanity check - make sure we saw the correct number of table slots if( (used + empty) != N_PROCS ) { cio_printf( "Table size %d, used %d + empty %d = %d???\n", N_PROCS, used, empty, used + empty ); } } /** ** Name: ptable_dump_counts ** ** Prints basic information about the process table (number of ** entries, number with each process state, etc.). */ void ptable_dump_counts( void ) { uint_t nstate[N_STATES] = { 0 }; uint_t unknown = 0; int n = 0; pcb_t *ptr = ptable; while( n < N_PROCS ) { if( ptr->state < 0 || ptr->state >= N_STATES ) { ++unknown; } else { ++nstate[ptr->state]; } ++n; ++ptr; } cio_printf( "Ptable: %u ***", unknown ); for( n = 0; n < N_STATES; ++n ) { cio_printf( " %u %s", nstate[n], state_str[n] != NULL ? state_str[n] : "???" ); } cio_putchar( '\n' ); }