#include "lib/kio.h" #include #include #include #include "physalloc.h" extern char kernel_start; extern char kernel_end; #define kaddr(addr) ((uintptr_t)(&addr)) // between memory_start and kernel_start will be the bitmap static uintptr_t memory_start = 0; static uint64_t *bitmap; static uint64_t total_memory; static uint64_t free_memory; static uint64_t page_count; static uint64_t segment_count; struct memory_map phys_mmap; struct memory_segment *page_start; static const char *segment_type_str[] = { "Reserved", "Free", "Reserved", "ACPI Reserved", "Hibernation", "Defective", "Unknown" }; static int n_pages(const struct memory_segment *m) { return m->len / PAGE_SIZE; } static void *page_at(int i) { int cur_page = 0; for (uint64_t idx = 0; idx < segment_count; idx++) { const struct memory_segment *m = page_start; int pages = n_pages(m); if (i - cur_page < pages) { return (void *)(m->addr + (PAGE_SIZE * (i - cur_page))); } cur_page += pages; } return NULL; } static long page_idx(void *page) { uintptr_t addr = (uintptr_t)page; int cur_page = 0; for (uint64_t idx = 0; idx < segment_count; idx++) { const struct memory_segment *m = page_start; if ((uintptr_t)m + m->len > addr) { return cur_page + ((addr - m->addr) / PAGE_SIZE); } cur_page += n_pages(m); } return -1; } static inline bool bitmap_get(int i) { return (bitmap[i / 64] >> i % 64) & 1; } static inline void bitmap_set(int i, bool v) { if (v) free_memory -= PAGE_SIZE; else free_memory += PAGE_SIZE; int idx = i / 64; bitmap[idx] &= ~(1 << i % 64); bitmap[idx] |= (v << i % 64); } void *alloc_phys_page(void) { return alloc_phys_pages(1); } void *alloc_phys_pages(int pages) { if (pages < 1) return NULL; int n_contiguous = 0; int free_region_start = 0; for (uint64_t i = 0; i < page_count; i++) { bool free = !bitmap_get(i); if (free) { if (n_contiguous == 0) free_region_start = i; n_contiguous++; if (n_contiguous == pages) { for (int j = 0; j < pages; j++) bitmap_set(free_region_start + j, true); return page_at(free_region_start); } } else n_contiguous = 0; } return NULL; } void free_phys_page(void *ptr) { free_phys_pages(ptr, 1); } void free_phys_pages(void *ptr, int pages) { long idx = page_idx(ptr); if (idx == -1) return; for (int i = 0; i < pages; i++) bitmap_set(idx + pages, false); } static bool segment_invalid(const struct memory_segment *segment) { if (segment->len < 1) return true; if (segment->type != 1) return true; if (segment->addr < kaddr(kernel_start)) return true; if (segment->addr + segment->len < memory_start) return true; if (segment->addr + segment->len < kaddr(kernel_start)) return true; return false; } static struct memory_segment clamp_segment(const struct memory_segment *segment) { uint64_t length = segment->len; uintptr_t addr = segment->addr; uintptr_t start; if (memory_start) start = memory_start; else start = kaddr(kernel_end); if (segment->addr < start) { addr = start; length -= addr - segment->addr; } else { addr = segment->addr; } struct memory_segment temp; temp.len = length; temp.addr = addr; return temp; } static uintptr_t page_align(uintptr_t ptr) { return (ptr + PAGE_SIZE - 1) / PAGE_SIZE * PAGE_SIZE; } void physalloc_init(struct memory_map *map) { bitmap = NULL; total_memory = 0; free_memory = 0; page_count = 0; page_start = NULL; phys_mmap = *map; segment_count = 0; for (uint32_t i = 0; i < map->entry_count; i++) { struct memory_segment *segment = &map->entries[i]; if (segment_invalid(segment)) continue; struct memory_segment temp = clamp_segment(segment); page_count += n_pages(&temp); segment_count++; } long bitmap_pages = (page_count / 64 / PAGE_SIZE) + 1; long bitmap_size = bitmap_pages * PAGE_SIZE; bitmap = (uint64_t *)page_align(kaddr(kernel_end)); long page_area_size = segment_count * sizeof(struct memory_segment); char *page_area_addr = (char *)bitmap + bitmap_size; page_area_addr = (char *)page_align((uintptr_t)page_area_addr); memory_start = page_align((uintptr_t)page_area_addr + page_area_size); bitmap = kmapaddr(bitmap, NULL, bitmap_size, F_WRITEABLE); memset(bitmap, 0, bitmap_size); page_area_addr = kmapaddr(page_area_addr, NULL, page_area_size, F_WRITEABLE); memset(page_area_addr, 0, page_area_size); page_start = (struct memory_segment *)page_area_addr; struct memory_segment *area = page_start; for (uint32_t i = 0; i < map->entry_count; i++) { struct memory_segment *segment = &map->entries[i]; if (segment_invalid(segment)) continue; struct memory_segment temp = clamp_segment(segment); *area = temp; area++; } total_memory = page_count * PAGE_SIZE; page_count -= bitmap_pages; free_memory = page_count * PAGE_SIZE; } uint64_t memory_total(void) { return total_memory; } uint64_t memory_free(void) { return free_memory; } uint64_t memory_used(void) { return total_memory - free_memory; } void memory_report(void) { char buf[20]; kprintf("MEMORY MAP\n"); for (uint32_t i = 0; i < phys_mmap.entry_count; i++) { struct memory_segment *seg; const char *type_str; seg = &phys_mmap.entries[i]; if (seg->type > 6) type_str = segment_type_str[6]; else type_str = segment_type_str[seg->type]; kprintf("ADDR: %16p LEN: %4s TYPE: %s (%d)\n", (void *)seg->addr, btoa(seg->len, buf), type_str, seg->type); } kprintf("\nMEMORY USAGE\n"); kprintf("mem total: %s\n", btoa(memory_total(), buf)); kprintf("mem free: %s\n", btoa(memory_free(), buf)); kprintf("mem used: %s\n\n", btoa(memory_used(), buf)); }