summaryrefslogtreecommitdiff
path: root/kernel/user.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/user.c')
-rw-r--r--kernel/user.c929
1 files changed, 0 insertions, 929 deletions
diff --git a/kernel/user.c b/kernel/user.c
deleted file mode 100644
index 5759534..0000000
--- a/kernel/user.c
+++ /dev/null
@@ -1,929 +0,0 @@
-/**
-** @file user.c
-**
-** @author CSCI-452 class of 20245
-**
-** @brief User-level code manipulation routines
-*/
-
-#define KERNEL_SRC
-
-#include <common.h>
-
-#include <bootstrap.h>
-#include <elf.h>
-#include <user.h>
-#include <vm.h>
-
-/*
-** PRIVATE DEFINITIONS
-*/
-
-/*
-** PRIVATE DATA TYPES
-*/
-
-/*
-** PRIVATE GLOBAL VARIABLES
-*/
-
-/*
-** PUBLIC GLOBAL VARIABLES
-*/
-
-/*
-** Location of the "user blob" in memory.
-**
-** These variables are filled in by the code in startup.S using values
-** passed to it from the bootstrap.
-**
-** These are visible so that the startup code can find them.
-*/
-uint16_t user_offset; // byte offset from the segment base
-uint16_t user_segment; // segment base address
-uint16_t user_sectors; // number of 512-byte sectors it occupies
-
-header_t *user_header; // filled in by the user_init routine
-prog_t *prog_table; // filled in by the user_init routine
-
-/*
-** PRIVATE FUNCTIONS
-*/
-
-#if TRACING_ELF
-
-/*
-** This is debugging support code; if not debugging the ELF
-** handling code, it won't be compiled into the kernel.
-*/
-
-// buffer used by some of these functions
-static char ebuf[16];
-
-/*
-** File header functions
-*/
-
-// interpret the file class
-static const char *fh_eclass(e32_si class)
-{
- switch (class) {
- case ELF_CLASS_NONE:
- return ("None");
- break;
- case ELF_CLASS_32:
- return ("EC32");
- break;
- case ELF_CLASS_64:
- return ("EC64");
- break;
- }
- return ("????");
-}
-
-// interpret the data encoding
-static const char *fh_edata(e32_si data)
-{
- switch (data) {
- case ELF_DATA_NONE:
- return ("Invd");
- break;
- case ELF_DATA_2LSB:
- return ("2CLE");
- break;
- case ELF_DATA_2MSB:
- return ("2CBE");
- break;
- }
- return ("????");
-}
-
-// interpret the file type
-static const char *fh_htype(e32_h type)
-{
- switch (type) {
- case ET_NONE:
- return ("none");
- break;
- case ET_REL:
- return ("rel");
- break;
- case ET_EXEC:
- return ("exec");
- break;
- case ET_DYN:
- return ("dyn");
- break;
- case ET_CORE:
- return ("core");
- break;
- default:
- if (type >= ET_LO_OS && type <= ET_HI_OS)
- return ("OSsp");
- else if (type >= ET_LO_CP && type <= ET_HI_CP)
- return ("CPsp");
- }
- sprint(ebuf, "0x%04x", type);
- return ((const char *)ebuf);
-}
-
-// interpret the machine type
-static const char *fh_mtype(e32_h machine)
-{
- switch (machine) {
- case EM_NONE:
- return ("None");
- break;
- case EM_386:
- return ("386");
- break;
- case EM_ARM:
- return ("ARM");
- break;
- case EM_X86_64:
- return ("AMD64");
- break;
- case EM_AARCH64:
- return ("AARCH64");
- break;
- case EM_RISCV:
- return ("RISC-V");
- break;
- }
- return ("Other");
-}
-
-// dump the program header
-static void dump_fhdr(elfhdr_t *hdr)
-{
- cio_puts("File header: magic ");
- for (int i = EI_MAG0; i <= EI_MAG3; ++i)
- put_char_or_code(hdr->e_ident.bytes[i]);
- cio_printf(" class %s", fh_eclass(hdr->e_ident.f.class));
- cio_printf(" enc %s", fh_edata(hdr->e_ident.f.data));
- cio_printf(" ver %u\n", hdr->e_ident.f.version);
- cio_printf(" type %s", fh_htype(hdr->e_type));
- cio_printf(" mach %s", fh_mtype(hdr->e_machine));
- cio_printf(" vers %d", hdr->e_version);
- cio_printf(" entr %08x\n", hdr->e_entry);
-
- cio_printf(" phoff %08x", hdr->e_phoff);
- cio_printf(" shoff %08x", hdr->e_shoff);
- cio_printf(" flags %08x", (uint32_t)hdr->e_flags);
- cio_printf(" ehsize %u\n", hdr->e_ehsize);
- cio_printf(" phentsize %u", hdr->e_phentsize);
- cio_printf(" phnum %u", hdr->e_phnum);
- cio_printf(" shentsize %u", hdr->e_shentsize);
- cio_printf(" shnum %u", hdr->e_shnum);
- cio_printf(" shstrndx %u\n", hdr->e_shstrndx);
-}
-
-/*
-** Program header functions
-*/
-
-// categorize the header type
-static const char *ph_type(e32_w type)
-{
- switch (type) {
- case PT_NULL:
- return ("Unused");
- break;
- case PT_LOAD:
- return ("Load");
- break;
- case PT_DYNAMIC:
- return ("DLI");
- break;
- case PT_INTERP:
- return ("Interp");
- break;
- case PT_NOTE:
- return ("Aux");
- break;
- case PT_SHLIB:
- return ("RSVD");
- break;
- case PT_PHDR:
- return ("PTentry");
- break;
- case PT_TLS:
- return ("TLS");
- break;
- default:
- if (type >= PT_LO_OS && type <= PT_HI_OS)
- return ("OSsp");
- else if (type >= PT_LO_CP && type <= PT_HI_CP)
- return ("CPsp");
- }
- sprint(ebuf, "0x%08x", type);
- return ((const char *)ebuf);
-}
-
-// report the individual flags
-static void ph_flags(e32_w flags)
-{
- if ((flags & PF_R) != 0)
- cio_putchar('R');
- if ((flags & PF_W) != 0)
- cio_putchar('W');
- if ((flags & PF_E) != 0)
- cio_putchar('X');
-}
-
-// dump a program header
-static void dump_phdr(elfproghdr_t *hdr, int n)
-{
- cio_printf("Prog header %d, type %s\n", n, ph_type(hdr->p_type));
- cio_printf(" offset %08x", hdr->p_offset);
- cio_printf(" va %08x", hdr->p_va);
- cio_printf(" pa %08x\n", hdr->p_pa);
- cio_printf(" filesz %08x", hdr->p_filesz);
- cio_printf(" memsz %08x", hdr->p_memsz);
- cio_puts(" flags ");
- ph_flags(hdr->p_flags);
- cio_printf(" align %08x", hdr->p_align);
- cio_putchar('\n');
-}
-
-/*
-** Section header functions
-*/
-
-// interpret the header type
-static const char *sh_type(e32_w type)
-{
- switch (type) {
- case SHT_NULL:
- return ("Unused");
- break;
- case SHT_PROGBITS:
- return ("Progbits");
- break;
- case SHT_SYMTAB:
- return ("Symtab");
- break;
- case SHT_STRTAB:
- return ("Strtab");
- break;
- case SHT_RELA:
- return ("Rela");
- break;
- case SHT_HASH:
- return ("Hash");
- break;
- case SHT_DYNAMIC:
- return ("Dynamic");
- break;
- case SHT_NOTE:
- return ("Note");
- break;
- case SHT_NOBITS:
- return ("Nobits");
- break;
- case SHT_REL:
- return ("Rel");
- break;
- case SHT_SHLIB:
- return ("Shlib");
- break;
- case SHT_DYNSYM:
- return ("Dynsym");
- break;
- default:
- if (type >= SHT_LO_CP && type <= SHT_HI_CP)
- return ("CCsp");
- else if (type >= SHT_LO_US && type <= SHT_HI_US)
- return ("User");
- }
- sprint(ebuf, "0x%08x", type);
- return ((const char *)ebuf);
-}
-
-// report the various flags
-static void sh_flags(unsigned int flags)
-{
- if ((flags & SHF_WRITE) != 0)
- cio_putchar('W');
- if ((flags & SHF_ALLOC) != 0)
- cio_putchar('A');
- if ((flags & SHF_EXECINSTR) != 0)
- cio_putchar('X');
- if ((flags & SHF_MERGE) != 0)
- cio_putchar('M');
- if ((flags & SHF_STRINGS) != 0)
- cio_putchar('S');
- if ((flags & SHF_INFO_LINK) != 0)
- cio_putchar('L');
- if ((flags & SHF_LINK_ORDER) != 0)
- cio_putchar('o');
- if ((flags & SHF_OS_NONCON) != 0)
- cio_putchar('n');
- if ((flags & SHF_GROUP) != 0)
- cio_putchar('g');
- if ((flags & SHF_TLS) != 0)
- cio_putchar('t');
-}
-
-// dump a section header
-ATTR_UNUSED
-static void dump_shdr(elfsecthdr_t *hdr, int n)
-{
- cio_printf("Sect header %d, type %d (%s), name %s\n", n, hdr->sh_type,
- sh_type(hdr->sh_type));
- cio_printf(" flags %08x ", (uint32_t)hdr->sh_flags);
- sh_flags(hdr->sh_flags);
- cio_printf(" addr %08x", hdr->sh_addr);
- cio_printf(" offset %08x", hdr->sh_offset);
- cio_printf(" size %08x\n", hdr->sh_size);
- cio_printf(" link %08x", hdr->sh_link);
- cio_printf(" info %08x", hdr->sh_info);
- cio_printf(" align %08x", hdr->sh_addralign);
- cio_printf(" entsz %08x\n", hdr->sh_entsize);
-}
-#endif
-
-/**
-** read_phdrs(addr,phoff,phentsize,phnum)
-**
-** Parses the ELF program headers and each segment described into memory.
-**
-** @param hdr Pointer to the program header
-** @param pcb Pointer to the PCB (and its PDE)
-**
-** @return status of the attempt:
-** SUCCESS everything loaded correctly
-** E_LOAD_LIMIT more than N_LOADABLE PT_LOAD sections
-** other status returned from vm_add()
-*/
-static int read_phdrs(elfhdr_t *hdr, pcb_t *pcb)
-{
- // sanity check
- assert1(hdr != NULL);
- assert2(pcb != NULL);
-
-#if TRACING_USER
- cio_printf("read_phdrs(%08x,%08x)\n", (uint32_t)hdr, (uint32_t)pcb);
-#endif
-
- // iterate through the program headers
- uint_t nhdrs = hdr->e_phnum;
-
- // pointer to the first header table entry
- elfproghdr_t *curr = (elfproghdr_t *)((uint32_t)hdr + hdr->e_phoff);
-
- // process them all
- int loaded = 0;
- for (uint_t i = 0; i < nhdrs; ++i, ++curr) {
-#if TRACING_ELF
- dump_phdr(curr, i);
-#endif
- if (curr->p_type != PT_LOAD) {
- // not loadable --> we'll skip it
- continue;
- }
-
- if (loaded >= N_LOADABLE) {
-#if TRACING_USER
- cio_puts(" LIMIT\n");
-#endif
- return E_LOAD_LIMIT;
- }
-
- // set a pointer to the bytes within the object file
- char *data = (char *)(((uint32_t)hdr) + curr->p_offset);
-#if TRACING_USER
- cio_printf(" data @ %08x", (uint32_t)data);
-#endif
-
- // copy the pages into memory
- int stat = vm_add(pcb->pdir, curr->p_flags & PF_W, false,
- (char *)curr->p_va, curr->p_memsz, data,
- curr->p_filesz);
- if (stat != SUCCESS) {
- // TODO what else should we do here? check for memory leak?
- return stat;
- }
-
- // set the section table entry in the PCB
- pcb->sects[loaded].length = curr->p_memsz;
- pcb->sects[loaded].addr = curr->p_va;
-#if TRACING_USER
- cio_printf(" loaded %u @ %08x\n", pcb->sects[loaded].length,
- pcb->sects[loaded].addr);
-#endif
- ++loaded;
- }
-
- return SUCCESS;
-}
-
-/**
-** Name: stack_setup
-**
-** Set up the stack for a new process
-**
-** @param pcb Pointer to the PCB for the process
-** @param entry Entry point for the new process
-** @param args Argument vector to be put in place
-** @param sys Is the argument vector from kernel code?
-**
-** @return A (user VA) pointer to the context_t on the stack, or NULL
-*/
-static context_t *stack_setup(pcb_t *pcb, uint32_t entry, const char **args,
- bool_t sys)
-{
-#if TRACING_USER
- cio_printf("stksetup: pcb %08x, entry %08x, args %08x\n", (uint32_t)pcb,
- entry, (uint32_t)args);
-#endif
-
- /*
- ** First, we need to calculate the space we'll need for the argument
- ** vector and strings.
- **
- ** Keeping track of kernel vs. user VAs is tricky, so we'll use
- ** a prefix on variable names: kv_* is a kernel virtual address;
- ** uv_* is a user virtual address.
- **
- ** We rely on the C standard, section 6.7.8, to clear these arrays:
- **
- ** "21 If there are fewer initializers in a brace-enclosed list
- ** than there are elements or members of an aggregate, or
- ** fewer characters in a string literal used to initialize an
- ** array of known size than there are elements in the array,
- ** the remainder of the aggregate shall be initialized
- ** implicitly the same as objects that have static storage
- ** duration."
- */
-
- int argbytes = 0; // total length of arg strings
- int argc = 0; // number of argv entries
- const char *kv_strs[N_ARGS] = { 0 }; // converted user arg string pointers
- int strlengths[N_ARGS] = { 0 }; // length of each string
- const char *uv_argv[N_ARGS] = { 0 }; // argv pointers
-
- /*
- ** IF the argument list given to us came from user code, we need
- ** to convert its address and the addresses it contains to kernel
- ** VAs; otherwise, we can use them directly.
- */
- char **kv_args = sys ? args : vm_uva2kva(pcb->pdir, (void *)args);
-
- while (kv_args[argc] != NULL) {
- kv_strs[argc] = sys ? args[argc] :
- vm_uva2kva(pcb->pdir, (void *)(kv_args[argc]));
- strlengths[argc] = strlen(kv_strs[argc]) + 1;
- // can't go over one page in size
- if ((argbytes + strlengths[argc]) > SZ_PAGE) {
- // oops - ignore this and any others
- break;
- }
- argbytes += strlengths[argc];
- ++argc;
- }
-
- // Round up the byte count to the next multiple of four.
- argbytes = (argbytes + 3) & MOD4_MASK;
-
- /*
- ** The pages for the stack were cleared when they were allocated,
- ** so we don't need to remember to do that.
- **
- ** We reserve one longword at the bottom of the stack to hold a
- ** pointer to where argv is on the stack.
- **
- ** The user code was linked with a startup function that defines
- ** the entry point (_start), calls main(), and then calls exit()
- ** if main() returns. We need to set up the stack this way:
- **
- ** esp -> context <- context save area
- ** ... <- context save area
- ** context <- context save area
- ** entry_pt <- return address for the ISR
- ** argc <- argument count for main()
- ** /-> argv <- argv pointer for main()
- ** | ... <- argv array w/trailing NULL
- ** | ... <- argv character strings
- ** \--- ptr <- last word in stack
- **
- ** Stack alignment rules for the SysV ABI i386 supplement dictate that
- ** the 'argc' parameter must be at an address that is a multiple of 16;
- ** see below for more information.
- **
- ** Ultimately, this is what the bottom end of the stack will look like:
- **
- ** kvavptr
- ** kvacptr |
- ** | |
- ** v v
- ** argc argv av[0] av[1] etc NULL str0 str1 etc.
- ** [....][....][....][....] ... [0000] ... [......0......0.........]
- ** | ^ | | ^ ^
- ** | | | | | |
- ** ------ | ---------------------|-------
- ** ---------------------------
- */
-
- /*
- ** We need to find the last page of the user stack. Find the page
- ** table for the 4MB user address space. The physical address of its
- ** frame is in the first page directory entry. Extract that from the
- ** entry and convert it into a virtual address for the kernel to use.
- */
- pde_t *kv_userpt = (pde_t *)P2V(PTE_ADDR(pcb->pdir[USER_PDE]));
- assert(kv_userpt != NULL);
-
- /*
- ** The final entries in that PMT are for the pages of the user stack.
- ** Grab the physical address of the frame for the last one. (Again,
- ** we need to convert it to a virtual address we can use.)
- */
-
- // the PMT entry for that page
- pte_t pmt_entry = kv_userpt[USER_STK_LAST_PTE];
- assert(IS_PRESENT(pmt_entry));
-
- // user VA for the first byte of that page
- uint32_t *uvptr = (uint32_t *)USER_STACK_P2;
-
- // convert that address to a kernel VA
- uint32_t *kvptr = (uint32_t *)vm_uva2kva(pcb->pdir, (void *)uvptr);
-
- /*
- ** Move these pointers to where the string area will begin. We
- ** will then back up to the next lower multiple-of-four address.
- */
-
- uint32_t uvstrptr = ((uint32_t)uvptr) + SZ_PAGE - argbytes;
- uvstrptr &= MOD4_MASK;
-
- uint32_t kvstrptr = ((uint32_t)kvptr) + SZ_PAGE - argbytes;
- kvstrptr &= MOD4_MASK;
-
- // Copy over the argv strings, remembering where each string begins
- for (int i = 0; i < argc; ++i) {
- // copy the string using kernel addresses
- strcpy((char *)kvstrptr, kv_args[i]);
-
- // remember the user address where this string went
- uv_argv[i] = (char *)uvstrptr;
-
- // adjust both string addresses
- kvstrptr += strlengths[i];
- uvstrptr += strlengths[i];
- }
-
- /*
- ** Next, we need to copy over the other data. Start by determining
- ** where 'argc' should go.
- **
- ** Stack alignment is controlled by the SysV ABI i386 supplement,
- ** version 1.2 (June 23, 2016), which states in section 2.2.2:
- **
- ** "The end of the input argument area shall be aligned on a 16
- ** (32 or 64, if __m256 or __m512 is passed on stack) byte boundary.
- ** In other words, the value (%esp + 4) is always a multiple of 16
- ** (32 or 64) when control is transferred to the function entry
- ** point. The stack pointer, %esp, always points to the end of the
- ** latest allocated stack frame."
- **
- ** Isn't technical documentation fun? Ultimately, this means that
- ** the first parameter to main() should be on the stack at an address
- ** that is a multiple of 16. In our case, that is 'argc'.
- */
-
- /*
- ** The space needed for argc, argv, and the argv array itself is
- ** argc + 3 words (argc+1 for the argv entries, plus one word each
- ** for argc and argv). We back up that much from the string area.
- */
-
- int nwords = argc + 3;
- uint32_t *kvacptr = ((uint32_t *)kvstrptr) - nwords;
- uint32_t *uvacptr = ((uint32_t *)uvstrptr) - nwords;
-
- // back these up to multiple-of-16 addresses for stack alignment
- kvacptr = (uint32_t *)(((uint32_t)kvacptr) & MOD16_MASK);
- uvacptr = (uint32_t *)(((uint32_t)uvacptr) & MOD16_MASK);
-
- // copy in 'argc'
- *kvacptr = argc;
-
- // 'argv' immediately follows 'argc', and 'argv[0]' immediately
- // follows 'argv'
- uint32_t *kvavptr = kvacptr + 2;
- *(kvavptr - 1) = (uint32_t)kvavptr;
-
- // now, the argv entries themselves
- for (int i = 0; i < argc; ++i) {
- *kvavptr++ = (uint32_t)uv_argv[i];
- }
-
- // and the trailing NULL
- *kvavptr = NULL;
-
- /*
- ** Almost done!
- **
- ** Now we need to set up the initial context for the executing
- ** process.
- **
- ** When this process is dispatched, the context restore code will
- ** pop all the saved context information off the stack, including
- ** the saved EIP, CS, and EFLAGS. We set those fields up so that
- ** the interrupt "returns" to the entry point of the process.
- */
-
- // Locate the context save area on the stack by backup up one
- // "context" from where the argc value is saved
- context_t *kvctx = ((context_t *)kvacptr) - 1;
- uint32_t uvctx = (uint32_t)(((context_t *)uvacptr) - 1);
-
- /*
- ** We cleared the entire stack earlier, so all the context
- ** fields currently contain zeroes. We now need to fill in
- ** all the important fields.
- **
- ** Note: we don't need to set the ESP value for the process,
- ** as the 'popa' that restores the general registers doesn't
- ** actually restore ESP from the context area - it leaves it
- ** where it winds up.
- */
-
- kvctx->eflags = DEFAULT_EFLAGS; // IF enabled, IOPL 0
- kvctx->eip = entry; // initial EIP
- kvctx->cs = GDT_CODE; // segment registers
- kvctx->ss = GDT_STACK;
- kvctx->ds = kvctx->es = kvctx->fs = kvctx->gs = GDT_DATA;
-
- /*
- ** Return the new context pointer to the caller as a user
- ** space virtual address.
- */
-
- return ((context_t *)uvctx);
-}
-
-/*
-** PUBLIC FUNCTIONS
-*/
-
-/**
-** Name: user_init
-**
-** Initializes the user support module.
-*/
-void user_init(void)
-{
-#if TRACING_INIT
- cio_puts(" User");
-#endif
-
- // This is gross, but we need to get this information somehow.
- // Access the "user blob" data in the second bootstrap sector
- uint16_t *blobdata = (uint16_t *)P2V(USER_BLOB_DATA);
- user_offset = *blobdata++;
- user_segment = *blobdata++;
- user_sectors = *blobdata++;
-
-#if TRACING_USER
- cio_printf("\nUser blob: %u sectors @ %04x:%04x", user_sectors,
- user_segment, user_offset);
-#endif
-
- // calculate the location of the user blob
- if (user_sectors > 0) {
- // calculate the address of the header
- user_header = (header_t *)(KERN_BASE + ((((uint_t)user_segment) << 4) +
- ((uint_t)user_offset)));
-
- // the program table immediate follows the blob header
- prog_table = (prog_t *)(user_header + 1);
-
-#if TRACING_USER
- cio_printf(", hdr %08x, %u progs, tbl %08x\n", (uint32_t)user_header,
- user_header->num, (uint32_t)prog_table);
-#endif
-
- } else {
- // too bad, so sad!
- user_header = NULL;
- prog_table = NULL;
-#if TRACING_USER
- cio_putchar('\n');
-#endif
- }
-}
-
-/**
-** Name: user_locate
-**
-** Locates a user program in the user code archive.
-**
-** @param what The ID of the user program to find
-**
-** @return pointer to the program table entry in the code archive, or NULL
-*/
-prog_t *user_locate(uint_t what)
-{
-#if TRACING_USER
- cio_printf("ulocate: %u\n", what);
-#endif
-
- // no programs if there is no blob!
- if (user_header == NULL) {
- return NULL;
- }
-
- // make sure this is a reasonable program to request
- if (what >= user_header->num) {
- // no such program!
- return NULL;
- }
-
- // find the entry in the program table
- prog_t *prog = &prog_table[what];
-
- // if there are no bytes, it's useless
- if (prog->size < 1) {
- return NULL;
- }
-
- // return the program table pointer
- return prog;
-}
-
-/**
-** Name: user_duplicate
-**
-** Duplicates the memory setup for an existing process.
-**
-** @param new The PCB for the new copy of the program
-** @param old The PCB for the existing the program
-**
-** @return the status of the duplicate attempt
-*/
-int user_duplicate(pcb_t *new, pcb_t *old)
-{
-#if TRACING_USER
- cio_printf("udup: old %08x new %08x\n", (uint32_t)old, (uint32_t)new);
-#endif
-
- // We need to do a recursive duplication of the process address
- // space of the current process. First, we create a new user
- // page directory. Next, we'll duplicate the USER_PDE page
- // table. Finally, we'll go through that table and duplicate
- // all the frames.
-
- // create the initial VM hierarchy
- pde_t *pdir = vm_mkuvm();
- if (pdir == NULL) {
- return E_NO_MEMORY;
- }
- new->pdir = pdir;
-
- // Next, add a USER_PDE page table that's a duplicate of the
- // current process' page table
- if (!vm_uvmdup(new->pdir, old->pdir)) {
- // check for memory leak?
- return E_NO_MEMORY;
- }
-
- // We don't do copy-on-write, so we must duplicate all the
- // individual page frames. Iterate through all the user-level
- // PDE entries, and replace the existing frames with duplicates.
- //
- // NOTE: we only deal with pdir[0] here, as we are limiting
- // the user address space to the first 4MB. If the size of
- // the address space goes up, this code will need to be
- // modified to loop over the larger space.
-
- // pointer to the PMT for the user
- pte_t *pt = (pte_t *)(pdir[USER_PDE]);
- assert(pt != NULL);
-
- for (int i = 0; i < N_PTE; ++i) {
- // get the current entry from the PMT
- pte_t entry = *pt;
-
- // if this entry is present,
- if (IS_PRESENT(entry)) {
- // duplicate the frame pointed to by this PTE
- void *tmp = vm_pagedup((void *)PTE_ADDR(entry));
-
- // replace the old frame number with the new one
- *pt = (pte_t)(((uint32_t)tmp) | PERMS(entry));
-
- } else {
- *pt = 0;
- }
- ++pt;
- }
-
- return SUCCESS;
-}
-
-/**
-** Name: user_load
-**
-** Loads a user program from the user code archive into memory.
-** Allocates all needed frames and sets up the VM tables.
-**
-** @param ptab A pointer to the program table entry to be loaded
-** @param pcb The PCB for the program being loaded
-** @param args The argument vector for the program
-** @param sys Is the argument vector from kernel code?
-**
-** @return the status of the load attempt
-*/
-int user_load(prog_t *ptab, pcb_t *pcb, const char **args, bool_t sys)
-{
- // NULL pointers are bad!
- assert1(ptab != NULL);
- assert1(pcb != NULL);
- assert1(args != NULL);
-
-#if TRACING_USER
- cio_printf("Uload: prog '%s' pcb %08x args %08x\n",
- ptab->name[0] ? ptab->name : "?", (uint32_t)pcb, (uint32_t)args);
-#endif
-
- // locate the ELF binary
- elfhdr_t *hdr = (elfhdr_t *)((uint32_t)user_header + ptab->offset);
-
-#if TRACING_ELF
- cio_printf("Load: ptab %08x: '%s', off %08x, size %08x, flags %08x\n",
- (uint32_t)ptab, ptab->name, ptab->offset, ptab->size,
- ptab->flags);
- cio_printf(" args %08x:", (uint32_t)args);
- if (sys) {
- for (int i = 0; args[i] != NULL; ++i) {
- cio_printf(" [%d] %s", i, args[i]);
- }
- } else {
- char **kv_args = vm_uva2kva(pcb->pdir, args);
- for (int i = 0; kv_args[i] != NULL; ++i) {
- cio_printf(" [%d] %s", i,
- (char *)vm_uva2kva(pcb->pdir, kv_args[i]));
- }
- }
- cio_printf("\n pcb %08x (pid %u)\n", (uint32_t)pcb, pcb->pid);
- dump_fhdr(hdr);
-#endif
-
- // verify the ELF header
- if (hdr->e_ident.f.magic != ELF_MAGIC) {
- return E_BAD_PARAM;
- }
-
- // allocate a page directory
- pcb->pdir = vm_mkuvm();
- if (pcb->pdir == NULL) {
- return E_NO_MEMORY;
- }
-
- // read all the program headers
- int stat = read_phdrs(hdr, pcb);
- if (stat != SUCCESS) {
- cio_printf("Uload: read_phdrs('%s') returned %d\n", ptab->name, stat);
- PANIC(0, "User_load: phdr read failed");
- }
-
- // next, set up the runtime stack - just like setting up loadable
- // sections, except nothing to copy
- stat =
- vm_add(pcb->pdir, true, false, (void *)USER_STACK, SZ_USTACK, NULL, 0);
- if (stat != SUCCESS) {
- cio_printf("Uload: vm_add('%s') stack returned %d\n", ptab->name, stat);
- PANIC(0, "user_load: vm_add stack failed");
- }
-
- // set up the command-line arguments
- pcb->context = stack_setup(pcb, hdr->e_entry, args, sys);
-
- return SUCCESS;
-}
-
-/**
-** Name: user_cleanup
-**
-** "Unloads" a user program. Deallocates all memory frames and
-** cleans up the VM structures.
-**
-** @param pcb The PCB of the program to be unloaded
-*/
-void user_cleanup(pcb_t *pcb)
-{
-#if TRACING_USER
- cio_printf("Uclean: %08x\n", (uint32_t)pcb);
-#endif
-
- if (pcb == NULL) {
- // should this be an error?
- return;
- }
-
- vm_free(pcb->pdir);
- pcb->pdir = NULL;
-}