summaryrefslogtreecommitdiff
path: root/kernel
diff options
context:
space:
mode:
authorFreya Murphy <freya@freyacat.org>2025-03-25 17:36:52 -0400
committerFreya Murphy <freya@freyacat.org>2025-03-25 17:38:22 -0400
commit6af21e6a4f2251e71353562d5df7f376fdffc270 (patch)
treede20c7afc9878422c81e34f30c6b010075e9e69a /kernel
downloadcomus-6af21e6a4f2251e71353562d5df7f376fdffc270.tar.gz
comus-6af21e6a4f2251e71353562d5df7f376fdffc270.tar.bz2
comus-6af21e6a4f2251e71353562d5df7f376fdffc270.zip
initial checkout from wrc
Diffstat (limited to 'kernel')
-rw-r--r--kernel/Make.mk66
-rw-r--r--kernel/cio.c796
-rw-r--r--kernel/clock.c163
-rw-r--r--kernel/isrs.S374
-rw-r--r--kernel/kernel.c381
-rw-r--r--kernel/kernel.ld57
-rw-r--r--kernel/kmem.c681
-rw-r--r--kernel/list.c64
-rw-r--r--kernel/procs.c1136
-rw-r--r--kernel/sio.c694
-rw-r--r--kernel/startup.S153
-rw-r--r--kernel/support.c279
-rw-r--r--kernel/syscalls.c829
-rw-r--r--kernel/user.c774
-rw-r--r--kernel/vm.c585
-rw-r--r--kernel/vmtables.c270
16 files changed, 7302 insertions, 0 deletions
diff --git a/kernel/Make.mk b/kernel/Make.mk
new file mode 100644
index 0000000..0c9b507
--- /dev/null
+++ b/kernel/Make.mk
@@ -0,0 +1,66 @@
+#
+# Makefile fragment for the kernel components of the system.
+#
+# Makefile fragment for the kernel component of the system.
+#
+# THIS IS NOT A COMPLETE Makefile - run GNU make in the top-level
+# directory, and this will be pulled in automatically.
+#
+
+SUBDIRS += kernel
+
+###################
+# FILES SECTION #
+###################
+
+BOOT_OBJ := $(patsubst %.c, $(BUILDDIR)/%.o, $(BOOT_SRC))
+
+KERN_SRC := kernel/startup.S kernel/isrs.S \
+ kernel/cio.c kernel/clock.c kernel/kernel.c kernel/kmem.c \
+ kernel/list.c kernel/procs.c kernel/sio.c kernel/support.c \
+ kernel/syscalls.c kernel/user.c kernel/vm.c kernel/vmtables.c
+
+KERN_OBJ := $(patsubst %.c, $(BUILDDIR)/%.o, $(KERN_SRC))
+KERN_OBJ := $(patsubst %.S, $(BUILDDIR)/%.o, $(KERN_OBJ))
+
+KCFLAGS := -ggdb
+KLDFLAGS := -T kernel/kernel.ld
+KLIBS := -lkernel -lcommon
+
+###################
+# RULES SECTION #
+###################
+
+kernel: $(BUILDDIR)/kernel/kernel.b
+
+$(BUILDDIR)/kernel/%.o: kernel/%.c $(BUILDDIR)/.vars.CFLAGS
+ @mkdir -p $(@D)
+ $(CC) $(CFLAGS) $(KCFLAGS) -c -o $@ $<
+
+$(BUILDDIR)/kernel/%.o: kernel/%.S $(BUILDDIR)/.vars.CFLAGS
+ @mkdir -p $(@D)
+ $(CPP) $(CPPFLAGS) -o $(@D)/$*.s $<
+ $(AS) $(ASFLAGS) $(KCFLAGS) -o $@ $(@D)/$*.s -a=$(@D)/$*.lst
+ $(RM) -f $(@D)/$*.s
+
+$(BUILDDIR)/kernel/kernel: $(KERN_OBJ)
+ @mkdir -p $(@D)
+ $(LD) $(KLDFLAGS) $(LDFLAGS) -o $@ $(KERN_OBJ) $(KLIBS)
+ $(OBJDUMP) -S $@ > $@.asm
+ $(NM) -n $@ > $@.sym
+ $(READELF) -a $@ > $@.info
+
+$(BUILDDIR)/kernel/kernel.b: $(BUILDDIR)/kernel/kernel
+ $(LD) $(LDFLAGS) -o $(BUILDDIR)/kernel/kernel.b -s \
+ --oformat binary -Ttext 0x10000 $(BUILDDIR)/kernel/kernel
+
+# some debugging assist rules
+$(BUILDDIR)/kernel/%.i: kernel/%.c $(BUILDDIR)/.vars.CFLAGS
+ @mkdir -p $(@D)
+ $(CC) $(CFLAGS) $(KCFLAGS) -E -c $< > $(@D)/$*.i
+
+$(BUILDDIR)/kernel/%.dat: $(BUILDDIR)/kernel/%.o
+ @mkdir -p $(@D)
+ $(OBJCOPY) -S -O binary -j .data $< $@
+ hexdump -C $@ > $(@D)/$*.hex
+
diff --git a/kernel/cio.c b/kernel/cio.c
new file mode 100644
index 0000000..cfff543
--- /dev/null
+++ b/kernel/cio.c
@@ -0,0 +1,796 @@
+/*
+** SCCS ID: @(#)cio.c 2.10 1/22/25
+**
+** @file cio.c
+**
+** @author Warren R. Carithers
+**
+** Based on: c_io.c 1.13 (Ken Reek, Jon Coles, Warren R. Carithers)
+**
+** Console I/O routines
+**
+** This module implements a simple set of input and output routines
+** for the console screen and keyboard on the machines in the DSL.
+** Refer to the header file comments for complete details.
+**
+** Naming conventions:
+**
+** Externally-visible functions have names beginning with the
+** characters "cio_".
+**
+*/
+
+#include <cio.h>
+#include <lib.h>
+#include <support.h>
+#include <x86/arch.h>
+#include <x86/pic.h>
+#include <x86/ops.h>
+
+/*
+** Bit masks for the lower five and eight bits of a value
+*/
+#define BMASK5 0x1f
+#define BMASK8 0xff
+
+/*
+** Video parameters
+*/
+#define SCREEN_MIN_X 0
+#define SCREEN_MIN_Y 0
+#define SCREEN_X_SIZE 80
+#define SCREEN_Y_SIZE 25
+#define SCREEN_MAX_X ( SCREEN_X_SIZE - 1 )
+#define SCREEN_MAX_Y ( SCREEN_Y_SIZE - 1 )
+
+/*
+** Video state
+*/
+static unsigned int scroll_min_x, scroll_min_y;
+static unsigned int scroll_max_x, scroll_max_y;
+static unsigned int curr_x, curr_y;
+static unsigned int min_x, min_y;
+static unsigned int max_x, max_y;
+
+// pointer to input notification function
+static void (*notify)(int);
+
+#ifdef SA_DEBUG
+#include <stdio.h>
+#define cio_putchar putchar
+#define cio_puts(x) fputs( x, stdout )
+#endif
+
+
+/*
+** VGA definitions.
+*/
+
+// calculate the memory address of a specific character position
+// within VGA memory
+#define VIDEO_ADDR(x,y) ( unsigned short * ) \
+ ( VID_BASE_ADDR + 2 * ( (y) * SCREEN_X_SIZE + (x) ) )
+
+// port addresses
+#define VGA_CTRL_IX_ADDR 0x3d4
+# define VGA_CTRL_CUR_HIGH 0x0e // cursor location, high byte
+# define VGA_CTRL_CUR_LOW 0x0f // cursor location, low byte
+#define VGA_CTRL_IX_DATA 0x3d5
+
+// attribute bits
+#define VGA_ATT_BBI 0x80 // blink, or background intensity
+#define VGA_ATT_BGC 0x70 // background color
+#define VGA_ATT_FICS 0x80 // foreground intensity or char font select
+#define VGA_ATT_FGC 0x70 // foreground color
+
+// color selections
+#define VGA_BG_BLACK 0x0000 // background colors
+#define VGA_BG_BLUE 0x1000
+#define VGA_BG_GREEN 0x2000
+#define VGA_BG_CYAN 0x3000
+#define VGA_BG_RED 0x4000
+#define VGA_BG_MAGENTA 0x5000
+#define VGA_BG_BROWN 0x6000
+#define VGA_BG_WHITE 0x7000
+
+#define VGA_FG_BLACK 0x0000 // foreground colors
+#define VGA_FG_BLUE 0x0100
+#define VGA_FG_GREEN 0x0200
+#define VGA_FG_CYAN 0x0300
+#define VGA_FG_RED 0x0400
+#define VGA_FG_MAGENTA 0x0500
+#define VGA_FG_BROWN 0x0600
+#define VGA_FG_WHITE 0x0700
+
+// color combinations
+#define VGA_WHITE_ON_BLACK (VGA_FG_WHITE | VGA_BG_BLACK)
+#define VGA_BLACK_ON_WHITE (VGA_FG_BLACK | VGA_BG_WHITE)
+
+/*
+** Internal support routines.
+*/
+
+/*
+** setcursor: set the cursor location (screen coordinates)
+*/
+static void setcursor( void ) {
+ unsigned addr;
+ unsigned int y = curr_y;
+
+ if( y > scroll_max_y ) {
+ y = scroll_max_y;
+ }
+
+ addr = (unsigned)( y * SCREEN_X_SIZE + curr_x );
+
+ outb( VGA_CTRL_IX_ADDR, VGA_CTRL_CUR_HIGH );
+ outb( VGA_CTRL_IX_DATA, ( addr >> 8 ) & BMASK8 );
+ outb( VGA_CTRL_IX_ADDR, VGA_CTRL_CUR_LOW );
+ outb( VGA_CTRL_IX_DATA, addr & BMASK8 );
+}
+
+/*
+** putchar_at: physical output to the video memory
+*/
+static void putchar_at( unsigned int x, unsigned int y, unsigned int c ) {
+ /*
+ ** If x or y is too big or small, don't do any output.
+ */
+ if( x <= max_x && y <= max_y ) {
+ unsigned short *addr = VIDEO_ADDR( x, y );
+
+ /*
+ ** The character may have attributes associated with it; if
+ ** so, use those, otherwise use white on black.
+ */
+ c &= 0xffff; // keep only the lower bytes
+ if( c > BMASK8 ) {
+ *addr = (unsigned short)c;
+ } else {
+ *addr = (unsigned short)c | VGA_WHITE_ON_BLACK;
+ }
+ }
+}
+
+/*
+** Globally-visible support routines.
+*/
+
+/*
+** Set the scrolling region
+*/
+void cio_setscroll( unsigned int s_min_x, unsigned int s_min_y,
+ unsigned int s_max_x, unsigned int s_max_y ) {
+ scroll_min_x = bound( min_x, s_min_x, max_x );
+ scroll_min_y = bound( min_y, s_min_y, max_y );
+ scroll_max_x = bound( scroll_min_x, s_max_x, max_x );
+ scroll_max_y = bound( scroll_min_y, s_max_y, max_y );
+ curr_x = scroll_min_x;
+ curr_y = scroll_min_y;
+ setcursor();
+}
+
+/*
+** Cursor movement in the scroll region
+*/
+void cio_moveto( unsigned int x, unsigned int y ) {
+ curr_x = bound( scroll_min_x, x + scroll_min_x, scroll_max_x );
+ curr_y = bound( scroll_min_y, y + scroll_min_y, scroll_max_y );
+ setcursor();
+}
+
+/*
+** The putchar family
+*/
+void cio_putchar_at( unsigned int x, unsigned int y, unsigned int c ) {
+ if( ( c & 0x7f ) == '\n' ) {
+ unsigned int limit;
+
+ /*
+ ** If we're in the scroll region, don't let this loop
+ ** leave it. If we're not in the scroll region, don't
+ ** let this loop enter it.
+ */
+ if( x > scroll_max_x ) {
+ limit = max_x;
+ }
+ else if( x >= scroll_min_x ) {
+ limit = scroll_max_x;
+ }
+ else {
+ limit = scroll_min_x - 1;
+ }
+ while( x <= limit ) {
+ putchar_at( x, y, ' ' );
+ x += 1;
+ }
+ }
+ else {
+ putchar_at( x, y, c );
+ }
+}
+
+#ifndef SA_DEBUG
+void cio_putchar( unsigned int c ) {
+ /*
+ ** If we're off the bottom of the screen, scroll the window.
+ */
+ if( curr_y > scroll_max_y ) {
+ cio_scroll( curr_y - scroll_max_y );
+ curr_y = scroll_max_y;
+ }
+
+ switch( c & BMASK8 ) {
+ case '\n':
+ /*
+ ** Erase to the end of the line, then move to new line
+ ** (actual scroll is delayed until next output appears).
+ */
+ while( curr_x <= scroll_max_x ) {
+ putchar_at( curr_x, curr_y, ' ' );
+ curr_x += 1;
+ }
+ curr_x = scroll_min_x;
+ curr_y += 1;
+ break;
+
+ case '\r':
+ curr_x = scroll_min_x;
+ break;
+
+ default:
+ putchar_at( curr_x, curr_y, c );
+ curr_x += 1;
+ if( curr_x > scroll_max_x ) {
+ curr_x = scroll_min_x;
+ curr_y += 1;
+ }
+ break;
+ }
+ setcursor();
+}
+#endif
+
+/*
+** The puts family
+*/
+void cio_puts_at( unsigned int x, unsigned int y, const char *str ) {
+ unsigned int ch;
+
+ while( (ch = *str++) != '\0' && x <= max_x ) {
+ cio_putchar_at( x, y, ch );
+ x += 1;
+ }
+}
+
+#ifndef SA_DEBUG
+void cio_puts( const char *str ) {
+ unsigned int ch;
+
+ while( (ch = *str++) != '\0' ) {
+ cio_putchar( ch );
+ }
+}
+#endif
+
+/*
+** Write a "sized" buffer (like cio_puts(), but no NUL)
+*/
+void cio_write( const char *buf, int length ) {
+ for( int i = 0; i < length; ++i ) {
+ cio_putchar( buf[i] );
+ }
+}
+
+void cio_clearscroll( void ) {
+ unsigned int nchars = scroll_max_x - scroll_min_x + 1;
+ unsigned int l;
+ unsigned int c;
+
+ for( l = scroll_min_y; l <= scroll_max_y; l += 1 ) {
+ unsigned short *to = VIDEO_ADDR( scroll_min_x, l );
+
+ for( c = 0; c < nchars; c += 1 ) {
+ *to++ = ' ' | 0x0700;
+ }
+ }
+}
+
+void cio_clearscreen( void ) {
+ unsigned short *to = VIDEO_ADDR( min_x, min_y );
+ unsigned int nchars = ( max_y - min_y + 1 ) * ( max_x - min_x + 1 );
+
+ while( nchars > 0 ) {
+ *to++ = ' ' | 0x0700;
+ nchars -= 1;
+ }
+}
+
+
+void cio_scroll( unsigned int lines ) {
+ unsigned short *from;
+ unsigned short *to;
+ int nchars = scroll_max_x - scroll_min_x + 1;
+ int line, c;
+
+ /*
+ ** If # of lines is the whole scrolling region or more, just clear.
+ */
+ if( lines > scroll_max_y - scroll_min_y ) {
+ cio_clearscroll();
+ curr_x = scroll_min_x;
+ curr_y = scroll_min_y;
+ setcursor();
+ return;
+ }
+
+ /*
+ ** Must copy it line by line.
+ */
+ for( line = scroll_min_y; line <= scroll_max_y - lines; line += 1 ) {
+ from = VIDEO_ADDR( scroll_min_x, line + lines );
+ to = VIDEO_ADDR( scroll_min_x, line );
+ for( c = 0; c < nchars; c += 1 ) {
+ *to++ = *from++;
+ }
+ }
+
+ for( ; line <= scroll_max_y; line += 1 ) {
+ to = VIDEO_ADDR( scroll_min_x, line );
+ for( c = 0; c < nchars; c += 1 ) {
+ *to++ = ' ' | 0x0700;
+ }
+ }
+}
+
+static int mypad( int x, int y, int extra, int padchar ) {
+ while( extra > 0 ) {
+ if( x != -1 || y != -1 ) {
+ cio_putchar_at( x, y, padchar );
+ x += 1;
+ }
+ else {
+ cio_putchar( padchar );
+ }
+ extra -= 1;
+ }
+ return x;
+}
+
+static int mypadstr( int x, int y, char *str, int len, int width,
+ int leftadjust, int padchar ) {
+ int extra;
+
+ if( len < 0 ) {
+ len = strlen( str );
+ }
+ extra = width - len;
+ if( extra > 0 && !leftadjust ) {
+ x = mypad( x, y, extra, padchar );
+ }
+ if( x != -1 || y != -1 ) {
+ cio_puts_at( x, y, str );
+ x += len;
+ }
+ else {
+ cio_puts( str );
+ }
+ if( extra > 0 && leftadjust ) {
+ x = mypad( x, y, extra, padchar );
+ }
+ return x;
+}
+
+static void do_printf( int x, int y, char **f ) {
+ char *fmt = *f;
+ int *ap;
+ char buf[ 12 ];
+ char ch;
+ char *str;
+ int leftadjust;
+ int width;
+ int len;
+ int padchar;
+
+ /*
+ ** Get characters from the format string and process them
+ */
+
+ ap = (int *)( f + 1 );
+
+ while( (ch = *fmt++) != '\0' ) {
+
+ /*
+ ** Is it the start of a format code?
+ */
+
+ if( ch == '%' ) {
+
+ /*
+ ** Yes, get the padding and width options (if there).
+ ** Alignment must come at the beginning, then fill,
+ ** then width.
+ */
+
+ leftadjust = 0;
+ padchar = ' ';
+ width = 0;
+
+ ch = *fmt++;
+
+ if( ch == '-' ) {
+ leftadjust = 1;
+ ch = *fmt++;
+ }
+
+ if( ch == '0' ) {
+ padchar = '0';
+ ch = *fmt++;
+ }
+
+ while( ch >= '0' && ch <= '9' ) {
+ width *= 10;
+ width += ch - '0';
+ ch = *fmt++;
+ }
+
+ /*
+ ** What data type do we have?
+ */
+ switch( ch ) {
+
+ case 'c':
+ // ch = *( (int *)ap )++;
+ ch = *ap++;
+ buf[ 0 ] = ch;
+ buf[ 1 ] = '\0';
+ x = mypadstr( x, y, buf, 1, width, leftadjust, padchar );
+ break;
+
+ case 'd':
+ // len = cvtdec( buf, *( (int *)ap )++ );
+ len = cvtdec( buf, *ap++ );
+ x = mypadstr( x, y, buf, len, width, leftadjust, padchar );
+ break;
+
+ case 's':
+ // str = *( (char **)ap )++;
+ str = (char *) (*ap++);
+ x = mypadstr( x, y, str, -1, width, leftadjust, padchar );
+ break;
+
+ case 'x':
+ // len = cvthex( buf, *( (int *)ap )++ );
+ len = cvthex( buf, *ap++ );
+ x = mypadstr( x, y, buf, len, width, leftadjust, padchar );
+ break;
+
+ case 'o':
+ // len = cvtoct( buf, *( (int *)ap )++ );
+ len = cvtoct( buf, *ap++ );
+ x = mypadstr( x, y, buf, len, width, leftadjust, padchar );
+ break;
+
+ case 'u':
+ len = cvtuns( buf, *ap++ );
+ x = mypadstr( x, y, buf, len, width, leftadjust, padchar );
+ break;
+
+ }
+ } else {
+
+ /*
+ ** No - just print it normally.
+ */
+
+ if( x != -1 || y != -1 ) {
+ cio_putchar_at( x, y, ch );
+ switch( ch ) {
+ case '\n':
+ y += 1;
+ /* FALL THRU */
+
+ case '\r':
+ x = scroll_min_x;
+ break;
+
+ default:
+ x += 1;
+ }
+ }
+ else {
+ cio_putchar( ch );
+ }
+ }
+ }
+}
+
+void cio_printf_at( unsigned int x, unsigned int y, char *fmt, ... ) {
+ do_printf( x, y, &fmt );
+}
+
+void cio_printf( char *fmt, ... ) {
+ do_printf( -1, -1, &fmt );
+}
+
+/*
+** These are the "standard" IBM AT "Set 1" keycodes.
+*/
+
+static unsigned char scan_code[ 2 ][ 128 ] = {
+ { // unshifted characters
+/* 00-07 */ '\377', '\033', '1', '2', '3', '4', '5', '6',
+/* 08-0f */ '7', '8', '9', '0', '-', '=', '\b', '\t',
+/* 10-17 */ 'q', 'w', 'e', 'r', 't', 'y', 'u', 'i',
+/* 18-1f */ 'o', 'p', '[', ']', '\n', '\377', 'a', 's',
+/* 20-27 */ 'd', 'f', 'g', 'h', 'j', 'k', 'l', ';',
+/* 28-2f */ '\'', '`', '\377', '\\', 'z', 'x', 'c', 'v',
+/* 30-37 */ 'b', 'n', 'm', ',', '.', '/', '\377', '*',
+/* 38-3f */ '\377', ' ', '\377', '\377', '\377', '\377', '\377', '\377',
+/* 40-47 */ '\377', '\377', '\377', '\377', '\377', '\377', '\377', '7',
+/* 48-4f */ '8', '9', '-', '4', '5', '6', '+', '1',
+/* 50-57 */ '2', '3', '0', '.', '\377', '\377', '\377', '\377',
+/* 58-5f */ '\377', '\377', '\377', '\377', '\377', '\377', '\377', '\377',
+/* 60-67 */ '\377', '\377', '\377', '\377', '\377', '\377', '\377', '\377',
+/* 68-6f */ '\377', '\377', '\377', '\377', '\377', '\377', '\377', '\377',
+/* 70-77 */ '\377', '\377', '\377', '\377', '\377', '\377', '\377', '\377',
+/* 78-7f */ '\377', '\377', '\377', '\377', '\377', '\377', '\377', '\377'
+ },
+
+ { // shifted characters
+/* 00-07 */ '\377', '\033', '!', '@', '#', '$', '%', '^',
+/* 08-0f */ '&', '*', '(', ')', '_', '+', '\b', '\t',
+/* 10-17 */ 'Q', 'W', 'E', 'R', 'T', 'Y', 'U', 'I',
+/* 18-1f */ 'O', 'P', '{', '}', '\n', '\377', 'A', 'S',
+/* 20-27 */ 'D', 'F', 'G', 'H', 'J', 'K', 'L', ':',
+/* 28-2f */ '"', '~', '\377', '|', 'Z', 'X', 'C', 'V',
+/* 30-37 */ 'B', 'N', 'M', '<', '>', '?', '\377', '*',
+/* 38-3f */ '\377', ' ', '\377', '\377', '\377', '\377', '\377', '\377',
+/* 40-47 */ '\377', '\377', '\377', '\377', '\377', '\377', '\377', '7',
+/* 48-4f */ '8', '9', '-', '4', '5', '6', '+', '1',
+/* 50-57 */ '2', '3', '0', '.', '\377', '\377', '\377', '\377',
+/* 58-5f */ '\377', '\377', '\377', '\377', '\377', '\377', '\377', '\377',
+/* 60-67 */ '\377', '\377', '\377', '\377', '\377', '\377', '\377', '\377',
+/* 68-6f */ '\377', '\377', '\377', '\377', '\377', '\377', '\377', '\377',
+/* 70-77 */ '\377', '\377', '\377', '\377', '\377', '\377', '\377', '\377',
+/* 78-7f */ '\377', '\377', '\377', '\377', '\377', '\377', '\377', '\377'
+ }
+};
+
+/*
+** Scan code masks
+*/
+
+// 'release' bit
+#define REL_BIT 0x80
+#define CODE_BITS 0x7f
+
+#define IS_PRESS(c) (((c) & REL_BIT) == 0)
+#define IS_RELEASE(c) (((c) & REL_BIT) != 0)
+
+/*
+** Scan codes for some special characters
+*/
+
+// escape code - followed by another code byte
+#define SCAN_ESC 0xe0
+
+// shift keys: press, release
+#define L_SHIFT_DN 0x2a
+#define R_SHIFT_DN 0x36
+#define L_SHIFT_UP 0xaa
+#define R_SHIFT_UP 0xb6
+
+// control keys
+#define L_CTRL_DN 0x1d
+#define L_CTRL_UP 0x9d
+
+/*
+** I/O communication constants
+*/
+#define KBD_DATA 0x60
+#define KBD_STATUS 0x64
+#define READY 0x1
+
+/*
+** Circular buffer for input characters. Characters are inserted at
+** next_space, and are removed at next_char. Buffer is empty if
+** these are equal.
+*/
+#define C_BUFSIZE 200
+
+static char input_buffer[ C_BUFSIZE ];
+static volatile char *next_char = input_buffer;
+static volatile char *next_space = input_buffer;
+
+static volatile char *increment( volatile char *pointer ) {
+ if( ++pointer >= input_buffer + C_BUFSIZE ) {
+ pointer = input_buffer;
+ }
+ return pointer;
+}
+
+static int input_scan_code( int code ) {
+ static int shift = 0;
+ static int ctrl_mask = BMASK8;
+ int rval = -1;
+
+ /*
+ ** Do the shift processing
+ */
+ code &= BMASK8;
+ switch( code ) {
+ case L_SHIFT_DN:
+ case R_SHIFT_DN:
+ shift = 1;
+ break;
+
+ case L_SHIFT_UP:
+ case R_SHIFT_UP:
+ shift = 0;
+ break;
+
+ case L_CTRL_DN:
+ ctrl_mask = BMASK5;
+ break;
+
+ case L_CTRL_UP:
+ ctrl_mask = BMASK8;
+ break;
+
+ default:
+ /*
+ ** Process ordinary characters only on the press (to handle
+ ** autorepeat). Ignore undefined scan codes.
+ */
+ if( IS_PRESS(code) ) {
+ code = scan_code[ shift ][ (int)code ];
+ if( code != '\377' ) {
+ volatile char *next = increment( next_space );
+
+ /*
+ ** Store character only if there's room
+ */
+ rval = code & ctrl_mask;
+ if( next != next_char ) {
+ *next_space = code & ctrl_mask;
+ next_space = next;
+ }
+ }
+ }
+ }
+ return( rval );
+}
+
+static void keyboard_isr( int vector, int code ) {
+
+ int data = inb( KBD_DATA );
+ int val = input_scan_code( data );
+
+ // if there is a notification function, call it
+ if( val != -1 && notify )
+ notify( val );
+
+ outb( PIC1_CMD, PIC_EOI );
+}
+
+int cio_getchar( void ) {
+ char c;
+ int interrupts_enabled = r_eflags() & EFL_IF;
+
+ while( next_char == next_space ) {
+ if( !interrupts_enabled ) {
+ /*
+ ** Must read the next keystroke ourselves.
+ */
+ while( ( inb( KBD_STATUS ) & READY ) == 0 ) {
+ ;
+ }
+ (void) input_scan_code( inb( KBD_DATA ) );
+ }
+ }
+
+ c = *next_char & BMASK8;
+ next_char = increment( next_char );
+ if( c != EOT ) {
+ cio_putchar( c );
+ }
+ return c;
+}
+
+int cio_gets( char *buffer, unsigned int size ) {
+ char ch;
+ int count = 0;
+
+ while( size > 1 ) {
+ ch = cio_getchar();
+ if( ch == EOT ) {
+ break;
+ }
+ *buffer++ = ch;
+ count += 1;
+ size -= 1;
+ if( ch == '\n' ) {
+ break;
+ }
+ }
+ *buffer = '\0';
+ return count;
+}
+
+int cio_input_queue( void ) {
+ int n_chars = next_space - next_char;
+
+ if( n_chars < 0 ) {
+ n_chars += C_BUFSIZE;
+ }
+ return n_chars;
+}
+
+/*
+** Initialization routines
+*/
+void cio_init( void (*fcn)(int) ) {
+ /*
+ ** Screen dimensions
+ */
+ min_x = SCREEN_MIN_X;
+ min_y = SCREEN_MIN_Y;
+ max_x = SCREEN_MAX_X;
+ max_y = SCREEN_MAX_Y;
+
+ /*
+ ** Scrolling region
+ */
+ scroll_min_x = SCREEN_MIN_X;
+ scroll_min_y = SCREEN_MIN_Y;
+ scroll_max_x = SCREEN_MAX_X;
+ scroll_max_y = SCREEN_MAX_Y;
+
+ /*
+ ** Initial cursor location
+ */
+ curr_y = min_y;
+ curr_x = min_x;
+ setcursor();
+
+ /*
+ ** Notification function (or NULL)
+ */
+ notify = fcn;
+
+ /*
+ ** Set up the interrupt handler for the keyboard
+ */
+ install_isr( VEC_KBD, keyboard_isr );
+}
+
+#ifdef SA_DEBUG
+int main() {
+ cio_printf( "%d\n", 123 );
+ cio_printf( "%d\n", -123 );
+ cio_printf( "%d\n", 0x7fffffff );
+ cio_printf( "%d\n", 0x80000001 );
+ cio_printf( "%d\n", 0x80000000 );
+ cio_printf( "x%14dy\n", 0x80000000 );
+ cio_printf( "x%-14dy\n", 0x80000000 );
+ cio_printf( "x%014dy\n", 0x80000000 );
+ cio_printf( "x%-014dy\n", 0x80000000 );
+ cio_printf( "%s\n", "xyz" );
+ cio_printf( "|%10s|\n", "xyz" );
+ cio_printf( "|%-10s|\n", "xyz" );
+ cio_printf( "%c\n", 'x' );
+ cio_printf( "|%4c|\n", 'y' );
+ cio_printf( "|%-4c|\n", 'y' );
+ cio_printf( "|%04c|\n", 'y' );
+ cio_printf( "|%-04c|\n", 'y' );
+ cio_printf( "|%3d|\n", 5 );
+ cio_printf( "|%3d|\n", 54321 );
+ cio_printf( "%x\n", 0x123abc );
+ cio_printf( "|%04x|\n", 20 );
+ cio_printf( "|%012x|\n", 0xfedcba98 );
+ cio_printf( "|%-012x|\n", 0x76543210 );
+}
+
+int curr_x, curr_y, max_x, max_y;
+#endif
diff --git a/kernel/clock.c b/kernel/clock.c
new file mode 100644
index 0000000..96f71c4
--- /dev/null
+++ b/kernel/clock.c
@@ -0,0 +1,163 @@
+/**
+** @file clock.c
+**
+** @author CSCI-452 class of 20245
+**
+** @brief Clock module implementation
+*/
+
+#define KERNEL_SRC
+
+#include <common.h>
+
+#include <clock.h>
+#include <procs.h>
+
+#include <x86/arch.h>
+#include <x86/pic.h>
+#include <x86/pit.h>
+
+/*
+** PRIVATE DEFINITIONS
+*/
+
+/*
+** PRIVATE DATA TYPES
+*/
+
+/*
+** PRIVATE GLOBAL VARIABLES
+*/
+
+// pinwheel control variables
+static uint32_t pinwheel; // pinwheel counter
+static uint32_t pindex; // index into pinwheel string
+
+/*
+** PUBLIC GLOBAL VARIABLES
+*/
+
+// current system time
+uint32_t system_time;
+
+/*
+** PRIVATE FUNCTIONS
+*/
+
+/**
+** Name: clk_isr
+**
+** The ISR for the clock
+**
+** @param vector Vector number for the clock interrupt
+** @param code Error code (0 for this interrupt)
+*/
+static void clk_isr( int vector, int code ) {
+
+ // spin the pinwheel
+
+ ++pinwheel;
+ if( pinwheel == (CLOCK_FREQ / 10) ) {
+ pinwheel = 0;
+ ++pindex;
+ cio_putchar_at( 0, 0, "|/-\\"[ pindex & 3 ] );
+ }
+
+#if defined(SYSTEM_STATUS)
+ // Periodically, dump the queue lengths and the SIO status (along
+ // with the SIO buffers, if non-empty).
+ //
+ // Define the symbol SYSTEM_STATUS with a value equal to the desired
+ // reporting frequency, in seconds.
+
+ if( (system_time % SEC_TO_TICKS(SYSTEM_STATUS)) == 0 ) {
+ cio_printf_at( 1, 0, " queues: R[%u] W[%u] S[%u] Z[%u] I[%u] ",
+ pcb_queue_length(ready),
+ pcb_queue_length(waiting),
+ pcb_queue_length(sleeping),
+ pcb_queue_length(zombie),
+ pcb_queue_length(sioread)
+ );
+ }
+#endif
+
+ // time marches on!
+ ++system_time;
+
+ // wake up any sleeping processes whose time has come
+ //
+ // we give them preference over the current process when
+ // it is scheduled again
+
+ do {
+ // if there isn't anyone in the sleep queue, we're done
+ if( pcb_queue_empty(sleeping) ) {
+ break;
+ }
+
+ // peek at the first member of the queue
+ pcb_t *tmp = pcb_queue_peek( sleeping );
+ assert( tmp != NULL );
+
+ // the sleep queue is sorted in ascending order by wakeup
+ // time, so we know that the retrieved PCB's wakeup time is
+ // the earliest of any process on the sleep queue; if that
+ // time hasn't arrived yet, there's nobody left to awaken
+
+ if( tmp->wakeup > system_time ) {
+ break;
+ }
+
+ // OK, we need to wake this process up
+ assert( pcb_queue_remove(sleeping,&tmp) == SUCCESS );
+ schedule( tmp );
+ } while( 1 );
+
+ // next, we decrement the current process' remaining time
+ current->ticks -= 1;
+
+ // has it expired?
+ if( current->ticks < 1 ) {
+ // yes! reschedule it
+ schedule( current );
+ current = NULL;
+ // and pick a new process
+ dispatch();
+ }
+
+ // tell the PIC we're done
+ outb( PIC1_CMD, PIC_EOI );
+}
+
+/*
+** PUBLIC FUNCTIONS
+*/
+
+/**
+** Name: clk_init
+**
+** Initializes the clock module
+**
+*/
+void clk_init( void ) {
+
+#if TRACING_INIT
+ cio_puts( " Clock" );
+#endif
+
+ // start the pinwheel
+ pinwheel = (CLOCK_FREQ / 10) - 1;
+ pindex = 0;
+
+ // return to the dawn of time
+ system_time = 0;
+
+ // configure the clock
+ uint32_t divisor = PIT_FREQ / CLOCK_FREQ;
+ outb( PIT_CONTROL_PORT, PIT_0_LOAD | PIT_0_SQUARE );
+ outb( PIT_0_PORT, divisor & 0xff ); // LSB of divisor
+ outb( PIT_0_PORT, (divisor >> 8) & 0xff ); // MSB of divisor
+
+ // register the second-stage ISR
+ install_isr( VEC_TIMER, clk_isr );
+}
diff --git a/kernel/isrs.S b/kernel/isrs.S
new file mode 100644
index 0000000..421e6d2
--- /dev/null
+++ b/kernel/isrs.S
@@ -0,0 +1,374 @@
+/*
+** @file isrs.S
+**
+** @author K. Reek
+** @authors Jon Coles, Warren R. Carithers, Margaret Reek
+** @author numerous Systems Programming classes
+**
+** Stubs for ISRs.
+**
+** This module provides the stubs needed for interrupts to save
+** the machine state before calling the ISR. All interrupts have
+** their own stub which pushes the interrupt number on the stack.
+** This makes it possible for a common ISR to determine which
+** interrupted occurred.
+*/
+
+#define ASM_SRC
+
+ .arch i386
+
+#include <bootstrap.h>
+
+/*
+** Configuration options - define in Makefile
+**
+** TRACE_CX include context restore debugging code
+*/
+
+ .text
+
+/*
+** Macros for the isr stubs. Some interrupts push an error code on
+** the stack and others don't; for those that don't we simply push
+** a zero so that cleaning up from either type is identical.
+**
+** Note: these are not marked as global symbols, as they are never
+** accessed directly outside of this file. This could be changed
+** if need be by adding this line to each macro definition right
+** after the #define line:
+**
+** .global isr_##vector
+*/
+
+#define ISR(vector) \
+isr_##vector: ; \
+ pushl $0 ; \
+ pushl $vector ; \
+ jmp isr_save
+
+#define ERR_ISR(vector) \
+isr_##vector: ; \
+ pushl $vector ; \
+ jmp isr_save
+
+ .globl isr_table
+ .globl isr_restore
+
+/*
+** This routine saves the machine state, calls the ISR, and then
+** restores the machine state and returns from the interrupt.
+**
+********************************************************************
+********************************************************************
+** NOTE: this code is highly application-specific, and will most **
+** probably require modification to tailor it. **
+** **
+** Examples of mods: switch to/from user stack, context switch **
+** changes, etc. **
+********************************************************************
+********************************************************************
+*/
+
+isr_save:
+
+/*
+** Begin by saving the CPU state (except for the FP context information).
+**
+** At this point, the stack looks like this:
+**
+** esp -> vector # saved by the entry macro
+** error code, or 0 saved by the hardware, or the entry macro
+** saved EIP saved by the hardware
+** saved CS saved by the hardware
+** saved EFLAGS saved by the hardware
+*/
+ pusha // save E*X, ESP, EBP, ESI, EDI
+ pushl %ds // save segment registers
+ pushl %es
+ pushl %fs
+ pushl %gs
+ pushl %ss
+
+/*
+** Stack contents (all 32-bit longwords) and offsets from ESP:
+**
+** SS GS FS ES DS EDI ESI EBP ESP EBX EDX ECX EAX vec cod EIP CS EFL
+** 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68
+**
+** Note that the saved ESP is the contents before the PUSHA.
+**
+** Set up parameters for the ISR call.
+*/
+ movl 52(%esp),%eax // get vector number and error code
+ movl 56(%esp),%ebx
+
+/*
+***********************
+** MOD FOR 20245 **
+***********************
+*/
+
+/*
+** We need to switch to the system stack. This requires that we save
+** the user context pointer into the current PCB, then load ESP with
+** the initial system stack pointer.
+*/
+
+ .globl current
+ .globl kernel_esp
+
+ // save the context pointer
+ movl current, %edx
+ movl %esp, (%edx)
+
+ // also save the page directory pointer
+ movl %cr3, %ecx
+ movl %ecx, 4(%edx)
+
+ // switch to the system stack
+ //
+ // NOTE: this is inherently non-reentrant! If/when the OS
+ // is converted from monolithic to something that supports
+ // reentrant or interruptable ISRs, this code will need to
+ // be changed to support that!
+
+ movl kernel_esp, %esp
+
+ // we don't change CR3 because all the user PDIRs are
+ // set up with mappings for the OS in the upper half
+
+/*
+***********************
+** END MOD FOR 20245 **
+***********************
+*/
+
+ pushl %ebx // put them on the top of the stack ...
+ pushl %eax // ... as parameters for the ISR
+
+/*
+** Call the ISR
+*/
+ movl isr_table(,%eax,4),%ebx
+ call *%ebx
+ addl $8,%esp // pop the two parameters
+
+/*
+** Context restore begins here
+*/
+
+isr_restore:
+
+/*
+***********************
+** MOD FOR 20245 **
+***********************
+*/
+ movl current, %ebx // return to the user stack
+ movl (%ebx), %esp // ESP --> context save area
+ movl 4(%ebx), %ecx // page directory pointer
+ movl %ecx, %cr3
+
+ // now we're operating with the user process'
+ // page directory and stack
+
+/*
+***********************
+** END MOD FOR 20245 **
+***********************
+*/
+
+#ifdef TRACE_CX
+/*
+** DEBUGGING CODE PART 1
+**
+** This code will execute during each context restore, and
+** should be modified to print out whatever debugging information
+** is desired.
+**
+** By default, it prints out the CPU context being restored; it
+** relies on the standard save sequence (see above).
+*/
+ .globl cio_printf_at
+
+ pushl $fmt
+ pushl $1
+ pushl $0
+ call cio_printf_at
+ addl $12,%esp
+/*
+** END OF DEBUGGING CODE PART 1
+*/
+#endif
+
+/*
+** Restore the context.
+*/
+ popl %ss // restore the segment registers
+ popl %gs
+ popl %fs
+ popl %es
+ popl %ds
+ popa // restore others
+ addl $8, %esp // discard the error code and vector
+ iret // and return
+
+#ifdef TRACE_CX
+/*
+** DEBUGGING CODE PART 2
+**
+** This format string is arranged according to the ordering of values
+** in the context save area on the stack.
+*/
+fmt: .ascii " ss=%08x gs=%08x fs=%08x es=%08x ds=%08x\n"
+ .ascii "edi=%08x esi=%08x ebp=%08x esp=%08x ebx=%08x\n"
+ .ascii "edx=%08x ecx=%08x eax=%08x vec=%08x cod=%08x\n"
+ .string "eip=%08x cs=%08x efl=%08x\n"
+
+/*
+** END OF DEBUGGING CODE PART 2
+*/
+#endif
+
+/*
+** Here we generate the individual stubs for each interrupt.
+*/
+ISR(0x00); ISR(0x01); ISR(0x02); ISR(0x03);
+ISR(0x04); ISR(0x05); ISR(0x06); ISR(0x07);
+ERR_ISR(0x08); ISR(0x09); ERR_ISR(0x0a); ERR_ISR(0x0b);
+ERR_ISR(0x0c); ERR_ISR(0x0d); ERR_ISR(0x0e); ISR(0x0f);
+ISR(0x10); ERR_ISR(0x11); ISR(0x12); ISR(0x13);
+ISR(0x14); ERR_ISR(0x15); ISR(0x16); ISR(0x17);
+ISR(0x18); ISR(0x19); ISR(0x1a); ISR(0x1b);
+ISR(0x1c); ISR(0x1d); ISR(0x1e); ISR(0x1f);
+ISR(0x20); ISR(0x21); ISR(0x22); ISR(0x23);
+ISR(0x24); ISR(0x25); ISR(0x26); ISR(0x27);
+ISR(0x28); ISR(0x29); ISR(0x2a); ISR(0x2b);
+ISR(0x2c); ISR(0x2d); ISR(0x2e); ISR(0x2f);
+ISR(0x30); ISR(0x31); ISR(0x32); ISR(0x33);
+ISR(0x34); ISR(0x35); ISR(0x36); ISR(0x37);
+ISR(0x38); ISR(0x39); ISR(0x3a); ISR(0x3b);
+ISR(0x3c); ISR(0x3d); ISR(0x3e); ISR(0x3f);
+ISR(0x40); ISR(0x41); ISR(0x42); ISR(0x43);
+ISR(0x44); ISR(0x45); ISR(0x46); ISR(0x47);
+ISR(0x48); ISR(0x49); ISR(0x4a); ISR(0x4b);
+ISR(0x4c); ISR(0x4d); ISR(0x4e); ISR(0x4f);
+ISR(0x50); ISR(0x51); ISR(0x52); ISR(0x53);
+ISR(0x54); ISR(0x55); ISR(0x56); ISR(0x57);
+ISR(0x58); ISR(0x59); ISR(0x5a); ISR(0x5b);
+ISR(0x5c); ISR(0x5d); ISR(0x5e); ISR(0x5f);
+ISR(0x60); ISR(0x61); ISR(0x62); ISR(0x63);
+ISR(0x64); ISR(0x65); ISR(0x66); ISR(0x67);
+ISR(0x68); ISR(0x69); ISR(0x6a); ISR(0x6b);
+ISR(0x6c); ISR(0x6d); ISR(0x6e); ISR(0x6f);
+ISR(0x70); ISR(0x71); ISR(0x72); ISR(0x73);
+ISR(0x74); ISR(0x75); ISR(0x76); ISR(0x77);
+ISR(0x78); ISR(0x79); ISR(0x7a); ISR(0x7b);
+ISR(0x7c); ISR(0x7d); ISR(0x7e); ISR(0x7f);
+ISR(0x80); ISR(0x81); ISR(0x82); ISR(0x83);
+ISR(0x84); ISR(0x85); ISR(0x86); ISR(0x87);
+ISR(0x88); ISR(0x89); ISR(0x8a); ISR(0x8b);
+ISR(0x8c); ISR(0x8d); ISR(0x8e); ISR(0x8f);
+ISR(0x90); ISR(0x91); ISR(0x92); ISR(0x93);
+ISR(0x94); ISR(0x95); ISR(0x96); ISR(0x97);
+ISR(0x98); ISR(0x99); ISR(0x9a); ISR(0x9b);
+ISR(0x9c); ISR(0x9d); ISR(0x9e); ISR(0x9f);
+ISR(0xa0); ISR(0xa1); ISR(0xa2); ISR(0xa3);
+ISR(0xa4); ISR(0xa5); ISR(0xa6); ISR(0xa7);
+ISR(0xa8); ISR(0xa9); ISR(0xaa); ISR(0xab);
+ISR(0xac); ISR(0xad); ISR(0xae); ISR(0xaf);
+ISR(0xb0); ISR(0xb1); ISR(0xb2); ISR(0xb3);
+ISR(0xb4); ISR(0xb5); ISR(0xb6); ISR(0xb7);
+ISR(0xb8); ISR(0xb9); ISR(0xba); ISR(0xbb);
+ISR(0xbc); ISR(0xbd); ISR(0xbe); ISR(0xbf);
+ISR(0xc0); ISR(0xc1); ISR(0xc2); ISR(0xc3);
+ISR(0xc4); ISR(0xc5); ISR(0xc6); ISR(0xc7);
+ISR(0xc8); ISR(0xc9); ISR(0xca); ISR(0xcb);
+ISR(0xcc); ISR(0xcd); ISR(0xce); ISR(0xcf);
+ISR(0xd0); ISR(0xd1); ISR(0xd2); ISR(0xd3);
+ISR(0xd4); ISR(0xd5); ISR(0xd6); ISR(0xd7);
+ISR(0xd8); ISR(0xd9); ISR(0xda); ISR(0xdb);
+ISR(0xdc); ISR(0xdd); ISR(0xde); ISR(0xdf);
+ISR(0xe0); ISR(0xe1); ISR(0xe2); ISR(0xe3);
+ISR(0xe4); ISR(0xe5); ISR(0xe6); ISR(0xe7);
+ISR(0xe8); ISR(0xe9); ISR(0xea); ISR(0xeb);
+ISR(0xec); ISR(0xed); ISR(0xee); ISR(0xef);
+ISR(0xf0); ISR(0xf1); ISR(0xf2); ISR(0xf3);
+ISR(0xf4); ISR(0xf5); ISR(0xf6); ISR(0xf7);
+ISR(0xf8); ISR(0xf9); ISR(0xfa); ISR(0xfb);
+ISR(0xfc); ISR(0xfd); ISR(0xfe); ISR(0xff);
+
+ .data
+
+/*
+** This table contains the addresses where each of the preceding
+** stubs begins. This information is needed to initialize the
+** Interrupt Descriptor Table in support.c
+*/
+ .globl isr_stub_table
+isr_stub_table:
+ .long isr_0x00, isr_0x01, isr_0x02, isr_0x03
+ .long isr_0x04, isr_0x05, isr_0x06, isr_0x07
+ .long isr_0x08, isr_0x09, isr_0x0a, isr_0x0b
+ .long isr_0x0c, isr_0x0d, isr_0x0e, isr_0x0f
+ .long isr_0x10, isr_0x11, isr_0x12, isr_0x13
+ .long isr_0x14, isr_0x15, isr_0x16, isr_0x17
+ .long isr_0x18, isr_0x19, isr_0x1a, isr_0x1b
+ .long isr_0x1c, isr_0x1d, isr_0x1e, isr_0x1f
+ .long isr_0x20, isr_0x21, isr_0x22, isr_0x23
+ .long isr_0x24, isr_0x25, isr_0x26, isr_0x27
+ .long isr_0x28, isr_0x29, isr_0x2a, isr_0x2b
+ .long isr_0x2c, isr_0x2d, isr_0x2e, isr_0x2f
+ .long isr_0x30, isr_0x31, isr_0x32, isr_0x33
+ .long isr_0x34, isr_0x35, isr_0x36, isr_0x37
+ .long isr_0x38, isr_0x39, isr_0x3a, isr_0x3b
+ .long isr_0x3c, isr_0x3d, isr_0x3e, isr_0x3f
+ .long isr_0x40, isr_0x41, isr_0x42, isr_0x43
+ .long isr_0x44, isr_0x45, isr_0x46, isr_0x47
+ .long isr_0x48, isr_0x49, isr_0x4a, isr_0x4b
+ .long isr_0x4c, isr_0x4d, isr_0x4e, isr_0x4f
+ .long isr_0x50, isr_0x51, isr_0x52, isr_0x53
+ .long isr_0x54, isr_0x55, isr_0x56, isr_0x57
+ .long isr_0x58, isr_0x59, isr_0x5a, isr_0x5b
+ .long isr_0x5c, isr_0x5d, isr_0x5e, isr_0x5f
+ .long isr_0x60, isr_0x61, isr_0x62, isr_0x63
+ .long isr_0x64, isr_0x65, isr_0x66, isr_0x67
+ .long isr_0x68, isr_0x69, isr_0x6a, isr_0x6b
+ .long isr_0x6c, isr_0x6d, isr_0x6e, isr_0x6f
+ .long isr_0x70, isr_0x71, isr_0x72, isr_0x73
+ .long isr_0x74, isr_0x75, isr_0x76, isr_0x77
+ .long isr_0x78, isr_0x79, isr_0x7a, isr_0x7b
+ .long isr_0x7c, isr_0x7d, isr_0x7e, isr_0x7f
+ .long isr_0x80, isr_0x81, isr_0x82, isr_0x83
+ .long isr_0x84, isr_0x85, isr_0x86, isr_0x87
+ .long isr_0x88, isr_0x89, isr_0x8a, isr_0x8b
+ .long isr_0x8c, isr_0x8d, isr_0x8e, isr_0x8f
+ .long isr_0x90, isr_0x91, isr_0x92, isr_0x93
+ .long isr_0x94, isr_0x95, isr_0x96, isr_0x97
+ .long isr_0x98, isr_0x99, isr_0x9a, isr_0x9b
+ .long isr_0x9c, isr_0x9d, isr_0x9e, isr_0x9f
+ .long isr_0xa0, isr_0xa1, isr_0xa2, isr_0xa3
+ .long isr_0xa4, isr_0xa5, isr_0xa6, isr_0xa7
+ .long isr_0xa8, isr_0xa9, isr_0xaa, isr_0xab
+ .long isr_0xac, isr_0xad, isr_0xae, isr_0xaf
+ .long isr_0xb0, isr_0xb1, isr_0xb2, isr_0xb3
+ .long isr_0xb4, isr_0xb5, isr_0xb6, isr_0xb7
+ .long isr_0xb8, isr_0xb9, isr_0xba, isr_0xbb
+ .long isr_0xbc, isr_0xbd, isr_0xbe, isr_0xbf
+ .long isr_0xc0, isr_0xc1, isr_0xc2, isr_0xc3
+ .long isr_0xc4, isr_0xc5, isr_0xc6, isr_0xc7
+ .long isr_0xc8, isr_0xc9, isr_0xca, isr_0xcb
+ .long isr_0xcc, isr_0xcd, isr_0xce, isr_0xcf
+ .long isr_0xd0, isr_0xd1, isr_0xd2, isr_0xd3
+ .long isr_0xd4, isr_0xd5, isr_0xd6, isr_0xd7
+ .long isr_0xd8, isr_0xd9, isr_0xda, isr_0xdb
+ .long isr_0xdc, isr_0xdd, isr_0xde, isr_0xdf
+ .long isr_0xe0, isr_0xe1, isr_0xe2, isr_0xe3
+ .long isr_0xe4, isr_0xe5, isr_0xe6, isr_0xe7
+ .long isr_0xe8, isr_0xe9, isr_0xea, isr_0xeb
+ .long isr_0xec, isr_0xed, isr_0xee, isr_0xef
+ .long isr_0xf0, isr_0xf1, isr_0xf2, isr_0xf3
+ .long isr_0xf4, isr_0xf5, isr_0xf6, isr_0xf7
+ .long isr_0xf8, isr_0xf9, isr_0xfa, isr_0xfb
+ .long isr_0xfc, isr_0xfd, isr_0xfe, isr_0xff
diff --git a/kernel/kernel.c b/kernel/kernel.c
new file mode 100644
index 0000000..53e50a7
--- /dev/null
+++ b/kernel/kernel.c
@@ -0,0 +1,381 @@
+/**
+** @file kernel.c
+**
+** @author CSCI-452 class of 20245
+**
+** @brief Kernel support routines
+*/
+
+#define KERNEL_SRC
+
+#include <common.h>
+#include <cio.h>
+#include <clock.h>
+#include <kmem.h>
+#include <procs.h>
+#include <sio.h>
+#include <syscalls.h>
+#include <user.h>
+#include <userids.h>
+#include <vm.h>
+
+/*
+** PRIVATE DEFINITIONS
+*/
+
+/*
+** PRIVATE DATA TYPES
+*/
+
+/*
+** PRIVATE GLOBAL VARIABLES
+*/
+
+/*
+** PUBLIC GLOBAL VARIABLES
+*/
+
+// character buffers, usable throughout the OS
+// nto guaranteed to retain their contents across an exception return
+char b256[256]; // primarily used for message creation
+char b512[512]; // used by PANIC macro
+
+/*
+** PRIVATE FUNCTIONS
+*/
+
+/*
+** PRIVATE FUNCTIONS
+*/
+
+/**
+** report - report the system configuration
+**
+** Prints configuration information about the OS on the console monitor.
+**
+** @param dtrace Decode the TRACE options
+*/
+static void kreport( bool_t dtrace ) {
+
+ cio_puts( "\n-------------------------------\n" );
+ cio_printf( "Config: N_PROCS = %d", N_PROCS );
+ cio_printf( " N_PRIOS = %d", N_PRIOS );
+ cio_printf( " N_STATES = %d", N_STATES );
+ cio_printf( " CLOCK = %dHz\n", CLOCK_FREQ );
+
+ // This code is ugly, but it's the simplest way to
+ // print out the values of compile-time options
+ // without spending a lot of execution time at it.
+
+ cio_puts( "Options: "
+#ifdef RPT_INT_UNEXP
+ " R-uint"
+#endif
+#ifdef RPT_INT_MYSTERY
+ " R-mint"
+#endif
+#ifdef TRACE_CX
+ " CX"
+#endif
+#ifdef CONSOLE_STATS
+ " Cstats"
+#endif
+ ); // end of cio_puts() call
+
+#ifdef SANITY
+ cio_printf( " SANITY = %d", SANITY );
+#endif
+#ifdef STATUS
+ cio_printf( " STATUS = %d", STATUS );
+#endif
+
+#if TRACE > 0
+ cio_printf( " TRACE = 0x%04x\n", TRACE );
+
+ // decode the trace settings if that was requested
+ if( TRACING_SOMETHING && dtrace ) {
+
+ // this one is simpler - we rely on string literal
+ // concatenation in the C compiler to create one
+ // long string to print out
+
+ cio_puts( "Tracing:"
+#if TRACING_PCB
+ " PCB"
+#endif
+#if TRACING_STACK
+ " STK"
+#endif
+#if TRACING_QUEUE
+ " QUE"
+#endif
+#if TRACING_SCHED
+ " SCHED"
+#endif
+#if TRACING_SYSCALLS
+ " SCALL"
+#endif
+#if TRACING_SYSRETS
+ " SRET"
+#endif
+#if TRACING_EXIT
+ " EXIT"
+#endif
+#if TRACING_DISPATCH
+ " DISPATCH"
+#endif
+#if TRACING_INIT
+ " INIT"
+#endif
+#if TRACING_KMEM
+ " KM"
+#endif
+#if TRACING_KMEM_FREELIST
+ " KMFL"
+#endif
+#if TRACING_KMEM_INIT
+ " KMIN"
+#endif
+#if TRACING_SPAWN
+ " SPAWN"
+#endif
+#if TRACING_SIO_STAT
+ " S_STAT"
+#endif
+#if TRACING_SIO_ISR
+ " S_ISR"
+#endif
+#if TRACING_SIO_RD
+ " S_RD"
+#endif
+#if TRACING_SIO_WR
+ " S_WR"
+#endif
+#if TRACING_USER
+ " USER"
+#endif
+#if TRACING_ELF
+ " ELF"
+#endif
+ ); // end of cio_puts() call
+ }
+#endif /* TRACE > 0 */
+
+ cio_puts( "\n-------------------------------\n" );
+}
+
+
+#if defined(CONSOLE_STATS)
+/**
+** stats - callback routine for console statistics
+**
+** Called by the CIO module when a key is pressed on the
+** console keyboard. Depending on the key, it will print
+** statistics on the console display, or will cause the
+** user shell process to be dispatched.
+**
+** This code runs as part of the CIO ISR.
+*/
+static void stats( int code ) {
+
+ switch( code ) {
+
+ case 'a': // dump the active table
+ ptable_dump( "\nActive processes", false );
+ break;
+
+ case 'c': // dump context info for all active PCBs
+ ctx_dump_all( "\nContext dump" );
+ break;
+
+ case 'p': // dump the active table and all PCBs
+ ptable_dump( "\nActive processes", true );
+ break;
+
+ case 'q': // dump the queues
+ // code to dump out any/all queues
+ pcb_queue_dump( "R", ready );
+ pcb_queue_dump( "W", waiting );
+ pcb_queue_dump( "S", sleeping );
+ pcb_queue_dump( "Z", zombie );
+ pcb_queue_dump( "I", sioread );
+ break;
+
+ case 'r': // print system configuration information
+ report( true );
+ break;
+
+ // ignore CR and LF
+ case '\r': // FALL THROUGH
+ case '\n':
+ break;
+
+ default:
+ cio_printf( "console: unknown request '0x%02x'\n", code );
+ // FALL THROUGH
+
+ case 'h': // help message
+ cio_puts( "\nCommands:\n"
+ " a -- dump the active table\n"
+ " c -- dump contexts for active processes\n"
+ " h -- this message\n"
+ " p -- dump the active table and all PCBs\n"
+ " q -- dump the queues\n"
+ " r -- print system configuration\n"
+ );
+ break;
+ }
+}
+#endif
+
+/*
+** PUBLIC FUNCTIONS
+*/
+
+/**
+** main - system initialization routine
+**
+** Called by the startup code immediately before returning into the
+** first user process.
+**
+** Making this type 'int' keeps the compiler happy.
+*/
+int main( void ) {
+
+ /*
+ ** BOILERPLATE CODE - taken from basic framework
+ **
+ ** Initialize interrupt stuff.
+ */
+
+ init_interrupts(); // IDT and PIC initialization
+
+ /*
+ ** Console I/O system.
+ **
+ ** Does not depend on the other kernel modules, so we can
+ ** initialize it before we initialize the kernel memory
+ ** and queue modules.
+ */
+
+#if defined(CONSOLE_STATS)
+ cio_init( stats );
+#else
+ cio_init( NULL ); // no console callback routine
+#endif
+
+ cio_clearscreen(); // wipe out whatever is there
+
+ /*
+ ** TERM-SPECIFIC CODE STARTS HERE
+ */
+
+ /*
+ ** Initialize various OS modules
+ **
+ ** Other modules (clock, SIO, syscall, etc.) are expected to
+ ** install their own ISRs in their initialization routines.
+ */
+
+ cio_puts( "System initialization starting.\n" );
+ cio_puts( "-------------------------------\n" );
+
+ cio_puts( "Modules:" );
+
+ // call the module initialization functions, being
+ // careful to follow any module precedence requirements
+
+ km_init(); // MUST BE FIRST
+#if TRACING_KMEM || TRACING_KMEM_FREE
+ delay( DELAY_2_SEC ); // approximately
+#endif
+
+ // other module initialization calls here
+ clk_init(); // clock
+ pcb_init(); // process (PCBs, queues, scheduler)
+#if TRACING_PCB
+ delay( DELAY_2_SEC );
+#endif
+ sio_init(); // serial i/o
+ sys_init(); // system call
+#if TRACING_SYSCALLS || TRACING_SYSRETS
+ delay( DELAY_2_SEC );
+#endif
+ vm_init(); // virtual memory
+ user_init(); // user code handling
+
+ cio_puts( "\nModule initialization complete.\n" );
+ cio_puts( "-------------------------------\n" );
+
+ // report our configuration options
+ kreport( true );
+
+ delay( DELAY_3_SEC );
+
+ /*
+ ** Other tasks typically performed here:
+ **
+ ** Enabling any I/O devices (e.g., SIO xmit/rcv)
+ */
+
+ /*
+ ** Create the initial user process
+ **
+ ** This code is largely stolen from the fork() and exec()
+ ** implementations in syscalls.c; if those change, this must
+ ** also change.
+ */
+
+ // if we can't get a PCB, there's no use continuing!
+ assert( pcb_alloc(&init_pcb) == SUCCESS );
+
+ // fill in the necessary details
+ init_pcb->pid = PID_INIT;
+ init_pcb->state = STATE_NEW;
+ init_pcb->priority = PRIO_HIGH;
+
+ // find the 'init' program
+ prog_t *prog = user_locate( Init );
+ assert( prog != NULL );
+
+ // command-line arguments for 'init'
+ const char *args[2] = { "init", NULL };
+
+ // load it
+ assert( user_load(prog,init_pcb,args) == SUCCESS );
+
+ // send it on its merry way
+ schedule( init_pcb );
+
+#ifdef TRACE_CX
+ // if we're using a scrolling region, wait a bit more and then set it up
+ delay( DELAY_7_SEC );
+
+ // define a scrolling region in the top 7 lines of the screen
+ cio_setscroll( 0, 7, 99, 99 );
+
+ // clear it
+ cio_clearscroll();
+
+ // clear the top line
+ cio_puts_at( 0, 0, "* " );
+ // separator
+ cio_puts_at( 0, 6, "================================================================================" );
+#endif
+
+ // switch to the "real" kernel page directory
+ vm_set_kvm();
+
+ /*
+ ** END OF TERM-SPECIFIC CODE
+ **
+ ** Finally, report that we're all done.
+ */
+
+ cio_puts( "System initialization complete.\n" );
+ cio_puts( "-------------------------------\n" );
+
+ sio_enable( SIO_RX );
+
+ return 0;
+}
diff --git a/kernel/kernel.ld b/kernel/kernel.ld
new file mode 100644
index 0000000..2007432
--- /dev/null
+++ b/kernel/kernel.ld
@@ -0,0 +1,57 @@
+/*
+** Simple linker script for the 20245 kernel.
+*/
+
+OUTPUT_FORMAT("elf32-i386", "elf32-i386", "elf32-i386")
+OUTPUT_ARCH(i386)
+ENTRY(_start)
+
+SECTIONS
+{
+ /* Link the kernel at this address. */
+ /* Must match what is defined in vm.h! */
+ . = 0x80010000;
+
+ .text : AT(0x10000) {
+ *(.text .stub .text.* .gnu.linkonce.t.*)
+ }
+
+ /* standard symbols */
+ PROVIDE(etext = .);
+ PROVIDE(_etext = .);
+
+ /* put read-only data next */
+ .rodata : {
+ *(.rodata .rodata.* .gnu.linkonce.r.*)
+ }
+
+ /* Align the data segment at the next page boundary */
+ /* . = ALIGN(0x1000); */
+
+ PROVIDE(data = .);
+ PROVIDE(_data = .);
+
+ /* The data segment */
+ .data : {
+ *(.data)
+ }
+
+ PROVIDE(edata = .);
+ PROVIDE(_edata = .);
+
+ /* page-align the BSS */
+ . = ALIGN(0x1000);
+
+ PROVIDE(__bss_start = .);
+
+ .bss : {
+ *(.bss)
+ }
+
+ PROVIDE(end = .);
+ PROVIDE(_end = .);
+
+ /DISCARD/ : {
+ *(.stab .stab_info .stabstr .eh_frame .note.GNU-stack .note.gnu.property .comment)
+ }
+}
diff --git a/kernel/kmem.c b/kernel/kmem.c
new file mode 100644
index 0000000..8777f49
--- /dev/null
+++ b/kernel/kmem.c
@@ -0,0 +1,681 @@
+/**
+** @file kmem.c
+**
+** @author Warren R. Carithers
+** @author Kenneth Reek
+** @author 4003-506 class of 20013
+**
+** @brief Functions to perform dynamic memory allocation in the OS.
+**
+** NOTE: these should NOT be called by user processes!
+**
+** This allocator functions as a simple "slab" allocator; it allows
+** allocation of either 4096-byte ("page") or 1024-byte ("slice")
+** chunks of memory from the free pool. The free pool is initialized
+** using the memory map provided by the BIOS during the boot sequence,
+** and contains a series of blocks which are each one page of memory
+** (4KB, and aligned at 4KB boundaries); they are held in the free list
+** in LIFO order, as all pages are created equal.
+**
+** Each allocator ("page" and "slice") allocates the first block from
+** the appropriate free list. On deallocation, the block is added back
+** to the free list.
+**
+** The "slice" allocator operates by taking blocks from the "page"
+** allocator and splitting them into four 1K slices, which it then
+** manages. Requests are made for slices one at a time. If the free
+** list contains an available slice, it is unlinked and returned;
+** otherwise, a page is requested from the page allocator, split into
+** slices, and the slices are added to the free list, after which the
+** first one is returned. The slice free list is a simple linked list
+** of these 1K blocks; because they are all the same size, no ordering
+** is done on the free list, and no coalescing is performed.
+**
+** This could be converted into a bitmap-based allocator pretty easily.
+** A 4GB address space contains 2^20 (1,048,576) pages; at one bit per
+** page frame, that's 131,072 (2^17) bytes to cover all of the address
+** space, and that could be reduced by restricting allocatable space
+** to a subset of the 4GB space.
+**
+** Compilation options:
+**
+** ALLOC_FAIL_PANIC if an internal slice allocation fails, panic
+*/
+
+#define KERNEL_SRC
+
+#include <common.h>
+
+// all other framework includes are next
+#include <lib.h>
+
+#include <kmem.h>
+
+#include <list.h>
+#include <x86/arch.h>
+#include <x86/bios.h>
+#include <bootstrap.h>
+#include <cio.h>
+
+/*
+** PRIVATE DEFINITIONS
+*/
+
+// parameters related to word and block sizes
+
+#define WORD_SIZE sizeof(int)
+#define LOG2_OF_WORD_SIZE 2
+
+#define LOG2_OF_PAGE_SIZE 12
+
+#define LOG2_OF_SLICE_SIZE 10
+
+// converters: pages to bytes, bytes to pages
+
+#define P2B(x) ((x) << LOG2_OF_PAGE_SIZE)
+#define B2P(x) ((x) >> LOG2_OF_PAGE_SIZE)
+
+/*
+** Name: adjacent
+**
+** Arguments: addresses of two blocks
+**
+** Description: Determines whether the second block immediately
+** follows the first one.
+*/
+#define adjacent(first,second) \
+ ( (void *) (first) + P2B((first)->pages) == (void *) (second) )
+
+/*
+** PRIVATE DATA TYPES
+*/
+
+/*
+** Memory region information returned by the BIOS
+**
+** This data consists of a 32-bit integer followed
+** by an array of region descriptor structures.
+*/
+
+// a handy union for playing with 64-bit addresses
+typedef union b64_u {
+ uint32_t part[2];
+ uint64_t all;
+} b64_t;
+
+// the halves of a 64-bit address
+#define LOW part[0]
+#define HIGH part[1]
+
+// memory region descriptor
+typedef struct memregion_s {
+ b64_t base; // base address
+ b64_t length; // region length
+ uint32_t type; // type of region
+ uint32_t acpi; // ACPI 3.0 info
+} __attribute__((__packed__)) region_t;
+
+/*
+** Region types
+*/
+
+#define REGION_USABLE 1
+#define REGION_RESERVED 2
+#define REGION_ACPI_RECL 3
+#define REGION_ACPI_NVS 4
+#define REGION_BAD 5
+
+/*
+** ACPI 3.0 bit fields
+*/
+
+#define REGION_IGNORE 0x01
+#define REGION_NONVOL 0x02
+
+/*
+** 32-bit and 64-bit address values as 64-bit literals
+*/
+
+#define ADDR_BIT_32 0x0000000100000000LL
+#define ADDR_LOW_HALF 0x00000000ffffffffLL
+#define ADDR_HIGH_HALR 0xffffffff00000000LL
+
+#define ADDR_32_MAX ADDR_LOW_HALF
+#define ADDR_64_FIRST ADDR_BIT_32
+
+/*
+** PRIVATE GLOBAL VARIABLES
+*/
+
+// freespace pools
+static list_t free_pages;
+static list_t free_slices;
+
+// block counts
+static uint32_t n_pages;
+static uint32_t n_slices;
+
+// initialization status
+static int km_initialized;
+
+/*
+** IMPORTED GLOBAL VARIABLES
+*/
+
+// this is no longer used; for simple situations, it can be used as
+// the KM_LOW_CUTOFF value
+//
+// extern int _end; // end of the BSS section - provided by the linker
+
+/*
+** FUNCTIONS
+*/
+
+/*
+** FREE LIST MANAGEMENT
+*/
+
+/**
+** Name: add_block
+**
+** Add a block to the free list. The block will be split into separate
+** page-sized fragments which will each be added to the free_pages
+** list; each of these will also be modified.
+**
+** @param[in] base Base address of the block
+** @param[in] length Block length, in bytes
+*/
+static void add_block( uint32_t base, uint32_t length ) {
+
+ // don't add it if it isn't at least 4K
+ if( length < SZ_PAGE ) {
+ return;
+ }
+
+#if TRACING_KMEM | TRACING_KMEM_INIT
+ cio_printf( " add(%08x,%08x): ", base, length );
+#endif
+
+ // verify that the base address is a 4K boundary
+ if( (base & MOD4K_BITS) != 0 ) {
+ // nope - how many bytes will we lose from the beginning
+ uint_t loss = base & MOD4K_BITS;
+ // adjust the starting address: (n + 4K - 1) / 4K
+ base = (base + MOD4K_BITS) & MOD4K_MASK;
+ // adjust the length
+ length -= loss;
+ }
+
+ // only want to add multiples of 4K; check the lower bits
+ if( (length & MOD4K_BITS) != 0 ) {
+ // round it down to 4K
+ length &= MOD4K_MASK;
+ }
+
+ // split the block into pages and add them to the free list
+
+ void *block = (void *) base;
+ void *blend = (void *) (base + length);
+ int npages = 0;
+
+#if TRACING_KMEM | TRACING_KMEM_INIT
+ cio_printf( "-> base %08x len %08x: ", base, length );
+#endif
+
+ while( block < blend ) {
+
+ // just add to the front of the list
+ list_add( &free_pages, block );
+ ++npages;
+
+ // move to the next block
+ base += SZ_PAGE;
+ block = (void *) base;
+ }
+
+ // add the count to our running total
+ n_pages += npages;
+
+#if TRACING_KMEM | TRACING_KMEM_INIT
+ cio_printf( " -> %d pages\n", npages );
+#endif
+}
+
+/**
+** Name: km_init
+**
+** Find what memory is present on the system and
+** construct the list of free memory blocks.
+**
+** Dependencies:
+** Must be called before any other init routine that uses
+** dynamic storage is called.
+*/
+void km_init( void ) {
+ int32_t entries;
+ region_t *region;
+
+#if TRACING_INIT
+ // announce that we're starting initialization
+ cio_puts( " Kmem" );
+#endif
+
+ // initially, nothing in the free lists
+ free_slices.next = NULL;
+ free_pages.next = NULL;
+ n_pages = n_slices = 0;
+ km_initialized = 0;
+
+ /*
+ ** We ignore anything below our KM_LOW_CUTOFF address. In theory,
+ ** we should be able to re-use much of that space; in practice,
+ ** this is safer.
+ */
+
+ // get the list length
+ entries = *((int32_t *) MMAP_ADDR);
+
+#if TRACING_KMEM | TRACING_KMEM_INIT
+ cio_printf( "\nKmem: %d regions\n", entries );
+#endif
+
+ // if there are no entries, we have nothing to do!
+ if( entries < 1 ) { // note: entries == -1 could occur!
+ return;
+ }
+
+ // iterate through the entries, adding things to the freelist
+
+ region = ((region_t *) (MMAP_ADDR + 4));
+
+ for( int i = 0; i < entries; ++i, ++region ) {
+
+#if TRACING_KMEM | TRACING_KMEM_INIT
+ // report this region
+ cio_printf( "%3d: ", i );
+ cio_printf( " B %08x%08x",
+ region->base.HIGH, region->base.LOW );
+ cio_printf( " L %08x%08x",
+ region->length.HIGH, region->length.LOW );
+ cio_printf( " T %08x A %08x",
+ region->type, region->acpi );
+#endif
+
+ /*
+ ** Determine whether or not we should ignore this region.
+ **
+ ** We ignore regions for several reasons:
+ **
+ ** ACPI indicates it should be ignored
+ ** ACPI indicates it's non-volatile memory
+ ** Region type isn't "usable"
+ ** Region is above our address limit
+ **
+ ** Currently, only "normal" (type 1) regions are considered
+ ** "usable" for our purposes. We could potentially expand
+ ** this to include ACPI "reclaimable" memory.
+ */
+
+ // first, check the ACPI one-bit flags
+
+ if( ((region->acpi) & REGION_IGNORE) == 0 ) {
+#if TRACING_KMEM | TRACING_KMEM_INIT
+ cio_puts( " IGN\n" );
+#endif
+ continue;
+ }
+
+ if( ((region->acpi) & REGION_NONVOL) != 0 ) {
+#if TRACING_KMEM | TRACING_KMEM_INIT
+ cio_puts( " NVOL\n" );
+#endif
+ continue; // we'll ignore this, too
+ }
+
+ // next, the region type
+
+ if( (region->type) != REGION_USABLE ) {
+#if TRACING_KMEM | TRACING_KMEM_INIT
+ cio_puts( " RCLM\n" );
+#endif
+ continue; // we won't attempt to reclaim ACPI memory (yet)
+ }
+
+ /*
+ ** We have a "normal" memory region. We need to verify
+ ** that it's within our constraints. We won't add anything
+ ** to the free list if it is:
+ **
+ ** * below our KM_LOW_CUTOFF value
+ ** * above out KM_HIGH_CUTOFF value.
+ **
+ ** For blocks which straddle one of those limits, we will
+ ** split it, and only use the portion that's within those
+ ** bounds.
+ */
+
+ // grab the two 64-bit values to simplify things
+ uint64_t base = region->base.all;
+ uint64_t length = region->length.all;
+ uint64_t endpt = base + length;
+
+ // ignore it if it's above our high cutoff point
+ if( base >= KM_HIGH_CUTOFF || endpt >= KM_HIGH_CUTOFF ) {
+
+ // is the whole thing too high, or just part?
+ if( base >= KM_HIGH_CUTOFF ) {
+ // it's all too high!
+#if TRACING_KMEM | TRACING_KMEM_INIT
+ cio_puts( " HIGH\n" );
+#endif
+ continue;
+ }
+
+ // some of it is usable - fix the end point
+ endpt = KM_HIGH_CUTOFF;
+ }
+
+ // see if it's below our low cutoff point
+ if( base < KM_LOW_CUTOFF || endpt < KM_LOW_CUTOFF ) {
+
+ // is the whole thing too low, or just part?
+ if( endpt < KM_LOW_CUTOFF ) {
+ // it's all below the cutoff!
+#if TRACING_KMEM | TRACING_KMEM_INIT
+ cio_puts( " LOW\n" );
+#endif
+ continue;
+ }
+
+ // some of it is usable - reset the base address
+ base = KM_LOW_CUTOFF;
+
+ // recalculate the length
+ length = endpt - base;
+ }
+
+ // we survived the gauntlet - add the new block
+ //
+ // we may have changed the base or endpoint, so
+ // we should recalculate the length
+ length = endpt - base;
+
+#if TRACING_KMEM | TRACING_KMEM_INIT
+ cio_puts( " OK\n" );
+#endif
+
+ uint32_t b32 = base & ADDR_LOW_HALF;
+ uint32_t l32 = length & ADDR_LOW_HALF;
+
+ add_block( b32, l32 );
+ }
+
+ // record the initialization
+ km_initialized = 1;
+
+#if TRACING_KMEM | TRACING_KMEM_INIT
+ delay( DELAY_3_SEC );
+#endif
+}
+
+/**
+** Name: km_dump
+**
+** Dump information about the free lists to the console. By default,
+** prints only the list sizes; if 'addrs' is true, also dumps the list
+** of page addresses; if 'all' is also true, dumps page addresses and
+** slice addresses.
+**
+** @param addrs Also dump page addresses
+** @param both Also dump slice addresses
+*/
+void km_dump( bool_t addrs, bool_t both ) {
+
+ // report the sizes
+ cio_printf( "&free_pages %08x, &free_slices %08x, %u pages, %u slices\n",
+ (uint32_t) &free_pages, (uint32_t) &free_slices,
+ n_pages, n_slices );
+
+ // was that all?
+ if( !addrs ) {
+ return;
+ }
+
+ // dump the addresses of the pages in the free list
+ uint32_t n = 0;
+ list_t *block = free_pages.next;
+ while( block != NULL ) {
+ if( n && !(n & MOD4_BITS) ) {
+ // four per line
+ cio_putchar( '\n' );
+ }
+ cio_printf( " page @ 0x%08x", (uint32_t) block );
+ block = block->next;
+ ++n;
+ }
+
+ // sanity check - verify that the counts match
+ if( n != n_pages ) {
+ sprint( b256, "km_dump: n_pages %u, counted %u!!!\n",
+ n_pages, n );
+ WARNING( b256);
+ }
+
+ if( !both ) {
+ return;
+ }
+
+ // but wait - there's more!
+
+ // also dump the addresses of slices in the slice free list
+ n = 0;
+ block = free_slices.next;
+ while( block != NULL ) {
+ if( n && !(n & MOD4_BITS) ) {
+ // four per line
+ cio_putchar( '\n' );
+ }
+ cio_printf( " slc @ 0x%08x", (uint32_t) block );
+ block = block->next;
+ ++n;
+ }
+
+ // sanity check - verify that the counts match
+ if( n != n_slices ) {
+ sprint( b256, "km_dump: n_slices %u, counted %u!!!\n",
+ n_slices, n );
+ WARNING( b256);
+ }
+}
+
+/*
+** PAGE MANAGEMENT
+*/
+
+/**
+** Name: km_page_alloc
+**
+** Allocate a page of memory from the free list.
+**
+** @return a pointer to the beginning of the allocated page,
+** or NULL if no memory is available
+*/
+void *km_page_alloc( void ) {
+
+ // if km_init() wasn't called first, stop us in our tracks
+ assert( km_initialized );
+
+#if TRACING_KMEM_FREELIST
+ cio_puts( "KM: pg_alloc()" );
+#endif
+
+ // pointer to the first block
+ void *page = list_remove( &free_pages );
+
+ // was a page available?
+ if( page == NULL ){
+ // nope!
+#if TRACING_KMEM_FREELIST
+ cio_puts( " FAIL\n" );
+#endif
+ return( NULL );
+ }
+
+ // fix the count of available pages
+ --n_pages;
+
+#if TRACING_KMEM_FREELIST
+ cio_printf( " -> %08x\n", (uint32_t) page );
+#endif
+
+ return( page );
+}
+
+/**
+** Name: km_page_free
+**
+** Returns a page to the list of available pages.
+**
+** @param[in] page Pointer to the page to be returned to the free list
+*/
+void km_page_free( void *page ){
+
+ // verify that km_init() was called first
+ assert( km_initialized );
+
+ /*
+ ** Don't do anything if the address is NULL.
+ */
+ if( page == NULL ){
+ return;
+ }
+
+#if TRACING_KMEM_FREELIST
+ cio_printf( "KM: pg_free(%08x)", (uint32_t) page );
+#endif
+
+ /*
+ ** CRITICAL ASSUMPTION
+ **
+ ** We assume that the block pointer given to us points to a single
+ ** page-sized block of memory. We make this assumption because we
+ ** don't track allocation sizes. We can't use the simple "allocate
+ ** four extra bytes before the returned pointer" scheme to do this
+ ** because we're managing pages, and the pointers we return must point
+ ** to page boundaries, so we would wind up allocating an extra page
+ ** for each allocation.
+ **
+ ** Alternatively, we could keep an array of addresses and block
+ ** sizes ourselves, but that feels clunky, and would risk running out
+ ** of table entries if there are lots of allocations (assuming we use
+ ** a 4KB page to hold the table, at eight bytes per entry we would have
+ ** 512 entries per page).
+ **
+ ** IF THIS ASSUMPTION CHANGES, THIS CODE MUST BE FIXED!!!
+ */
+
+ // link this into the free list
+ list_add( &free_pages, page );
+
+ // one more in the pool
+ ++n_pages;
+}
+
+/*
+** SLICE MANAGEMENT
+*/
+
+/*
+** Slices are 1024-byte fragments from pages. We maintain a free list of
+** slices for those parts of the OS which don't need full 4096-byte chunks
+** of space.
+*/
+
+/**
+** Name: carve_slices
+**
+** Split an allocated page into four slices and add
+** them to the "free slices" list.
+**
+** @param page Pointer to the page to be carved up
+*/
+static void carve_slices( void *page ) {
+
+ // sanity check
+ assert1( page != NULL );
+
+ // create the four slices from it
+ uint8_t *ptr = (uint8_t *) page;
+ for( int i = 0; i < 4; ++i ) {
+ km_slice_free( (void *) ptr );
+ ptr += SZ_SLICE;
+ ++n_slices;
+ }
+}
+
+/**
+** Name: km_slice_alloc
+**
+** Dynamically allocates a slice (1/4 of a page). If no
+** memory is available, we return NULL (unless ALLOC_FAIL_PANIC
+** was defined, in which case we panic).
+**
+** @return a pointer to the allocated slice
+*/
+void *km_slice_alloc( void ) {
+
+ // verify that km_init() was called first
+ assert( km_initialized );
+
+#if TRACING_KMEM_FREELIST
+ cio_printf( "KM: sl_alloc()\n" );
+#endif
+
+ // if we are out of slices, create a few more
+ if( free_slices.next == NULL ) {
+ void *new = km_page_alloc();
+ if( new == NULL ) {
+ // can't get any more space
+#if ALLOC_FAIL_PANIC
+ PANIC( 0, "slice new alloc failed" );
+#else
+ return NULL;
+#endif
+ }
+ carve_slices( new );
+ }
+
+ // take the first one from the free list
+ void *slice = list_remove( &free_slices );
+ assert( slice != NULL );
+ --n_slices;
+
+ // make it nice and shiny for the caller
+ memclr( (void *) slice, SZ_SLICE );
+
+ return( slice );
+}
+
+/**
+** Name: km_slice_free
+**
+** Returns a slice to the list of available slices.
+**
+** We make no attempt to merge slices, as we treat them as
+** independent blocks of memory (like pages).
+**
+** @param[in] block Pointer to the slice (1/4 page) to be freed
+*/
+void km_slice_free( void *block ) {
+
+ // verify that km_init() was called first
+ assert( km_initialized );
+
+#if TRACING_KMEM_FREELIST
+ cio_printf( "KM: sl_free(%08x)\n", (uint32_t) block );
+#endif
+
+ // just add it to the front of the free list
+ list_add( &free_slices, block );
+ --n_slices;
+}
diff --git a/kernel/list.c b/kernel/list.c
new file mode 100644
index 0000000..084000a
--- /dev/null
+++ b/kernel/list.c
@@ -0,0 +1,64 @@
+/**
+** @file list.c
+**
+** @author Warren R. Carithers
+**
+** @brief Support for a basic linked list data type.
+**
+** This module provides a very basic linked list data structure.
+** A list can contain anything that has a pointer field in the first
+** four bytes; these routines assume those bytes contain a pointer to
+** the following entry in the list, whatever that may be.
+*/
+
+#define KERNEL_SRC
+
+#include <common.h>
+
+#include <list.h>
+
+/*
+** FUNCTIONS
+*/
+
+/**
+** Name: list_add
+**
+** Add the supplied data to the beginning of the specified list.
+**
+** @param[in,out] list The address of a list_t variable
+** @param[in] data The data to prepend to the list
+*/
+void list_add( list_t *list, void *data ) {
+
+ // sanity checks
+ assert1( list != NULL );
+ assert1( data != NULL );
+
+ list_t *tmp = (list_t *)data;
+ tmp->next = list->next;
+ list->next = tmp;
+}
+
+/**
+** Name: list_remove
+**
+** Remove the first entry from a linked list.
+**
+** @param[in,out] list The address of a list_t variable
+**
+** @return a pointer to the removed data, or NULL if the list was empty
+*/
+void *list_remove( list_t *list ) {
+
+ assert1( list != NULL );
+
+ list_t *data = list->next;
+ if( data != NULL ) {
+ list->next = data->next;
+ data->next = NULL;
+ }
+
+ return (void *)data;
+}
+
diff --git a/kernel/procs.c b/kernel/procs.c
new file mode 100644
index 0000000..96bb3fd
--- /dev/null
+++ b/kernel/procs.c
@@ -0,0 +1,1136 @@
+/*
+** @file procs.c
+**
+** @author CSCI-452 class of 20245
+**
+** @brief Process-related implementations
+*/
+
+#define KERNEL_SRC
+
+#include <common.h>
+
+#include <procs.h>
+#include <user.h>
+
+/*
+** PRIVATE DEFINITIONS
+*/
+
+// determine if a queue is empty; assumes 'q' is a valid pointer
+#define PCB_QUEUE_EMPTY(q) ((q)->head == NULL)
+
+/*
+** PRIVATE DATA TYPES
+*/
+
+/*
+** PCB Queue structure
+**
+** Opaque to the rest of the kernel
+**
+** Typedef'd in the header: typedef struct pcb_queue_s *pcb_queue_t;
+*/
+struct pcb_queue_s {
+ pcb_t *head;
+ pcb_t *tail;
+ enum pcb_queue_order_e order;
+};
+
+/*
+** PRIVATE GLOBAL VARIABLES
+*/
+
+// collection of queues
+static struct pcb_queue_s pcb_freelist_queue;
+static struct pcb_queue_s ready_queue;
+static struct pcb_queue_s waiting_queue;
+static struct pcb_queue_s sleeping_queue;
+static struct pcb_queue_s zombie_queue;
+static struct pcb_queue_s sioread_queue;
+
+/*
+** PUBLIC GLOBAL VARIABLES
+*/
+
+// public-facing queue handles
+pcb_queue_t pcb_freelist;
+pcb_queue_t ready;
+pcb_queue_t waiting;
+pcb_queue_t sleeping;
+pcb_queue_t zombie;
+pcb_queue_t sioread;
+
+// pointer to the currently-running process
+pcb_t *current;
+
+// the process table
+pcb_t ptable[N_PROCS];
+
+// next available PID
+uint_t next_pid;
+
+// pointer to the PCB for the 'init' process
+pcb_t *init_pcb;
+
+// table of state name strings
+const char *state_str[N_STATES] = {
+ [ STATE_UNUSED ] = "Unu", // "Unused"
+ [ STATE_NEW ] = "New",
+ [ STATE_READY ] = "Rdy", // "Ready"
+ [ STATE_RUNNING ] = "Run", // "Running"
+ [ STATE_SLEEPING ] = "Slp", // "Sleeping"
+ [ STATE_BLOCKED ] = "Blk", // "Blocked"
+ [ STATE_WAITING ] = "Wat", // "Waiting"
+ [ STATE_KILLED ] = "Kil", // "Killed"
+ [ STATE_ZOMBIE ] = "Zom" // "Zombie"
+};
+
+// table of priority name strings
+const char *prio_str[N_PRIOS] = {
+ [ PRIO_HIGH ] = "High",
+ [ PRIO_STD ] = "User",
+ [ PRIO_LOW ] = "Low ",
+ [ PRIO_DEFERRED ] = "Def "
+};
+
+// table of queue ordering name strings
+const char *ord_str[N_PRIOS] = {
+ [ O_FIFO ] = "FIFO",
+ [ O_PRIO ] = "PRIO",
+ [ O_PID ] = "PID ",
+ [ O_WAKEUP ] = "WAKE"
+};
+
+/*
+** PRIVATE FUNCTIONS
+*/
+
+/**
+** Priority search functions. These are used to traverse a supplied
+** queue looking for the queue entry that would precede the supplied
+** PCB when that PCB is inserted into the queue.
+**
+** Variations:
+** find_prev_wakeup() compares wakeup times
+** find_prev_priority() compares process priorities
+** find_prev_pid() compares PIDs
+**
+** Each assumes the queue should be in ascending order by the specified
+** comparison value.
+**
+** @param[in] queue The queue to search
+** @param[in] pcb The PCB to look for
+**
+** @return a pointer to the predecessor in the queue, or NULL if
+** this PCB would be at the beginning of the queue.
+*/
+static pcb_t *find_prev_wakeup( pcb_queue_t queue, pcb_t *pcb ) {
+
+ // sanity checks!
+ assert1( queue != NULL );
+ assert1( pcb != NULL );
+
+ pcb_t *prev = NULL;
+ pcb_t *curr = queue->head;
+
+ while( curr != NULL && curr->wakeup <= pcb->wakeup ) {
+ prev = curr;
+ curr = curr->next;
+ }
+
+ return prev;
+}
+
+static pcb_t *find_prev_priority( pcb_queue_t queue, pcb_t *pcb ) {
+
+ // sanity checks!
+ assert1( queue != NULL );
+ assert1( pcb != NULL );
+
+ pcb_t *prev = NULL;
+ pcb_t *curr = queue->head;
+
+ while( curr != NULL && curr->priority <= pcb->priority ) {
+ prev = curr;
+ curr = curr->next;
+ }
+
+ return prev;
+}
+
+static pcb_t *find_prev_pid( pcb_queue_t queue, pcb_t *pcb ) {
+
+ // sanity checks!
+ assert1( queue != NULL );
+ assert1( pcb != NULL );
+
+ pcb_t *prev = NULL;
+ pcb_t *curr = queue->head;
+
+ while( curr != NULL && curr->pid <= pcb->pid ) {
+ prev = curr;
+ curr = curr->next;
+ }
+
+ return prev;
+}
+
+/*
+** PUBLIC FUNCTIONS
+*/
+
+// a macro to simplify queue setup
+#define QINIT(q,s) \
+ q = &q##_queue; \
+ if( pcb_queue_reset(q,s) != SUCCESS ) { \
+ PANIC( 0, "pcb_init can't reset " # q ); \
+ }
+
+/**
+** Name: pcb_init
+**
+** Initialization for the Process module.
+*/
+void pcb_init( void ) {
+
+#if TRACING_INIT
+ cio_puts( " Procs" );
+#endif
+
+ // there is no current process
+ current = NULL;
+
+ // set up the external links to the queues
+ QINIT( pcb_freelist, O_FIFO );
+ QINIT( ready, O_PRIO );
+ QINIT( waiting, O_PID );
+ QINIT( sleeping, O_WAKEUP );
+ QINIT( zombie, O_PID );
+ QINIT( sioread, O_FIFO );
+
+ /*
+ ** We statically allocate our PCBs, so we need to add them
+ ** to the freelist before we can use them. If this changes
+ ** so that we dynamicallyl allocate PCBs, this step either
+ ** won't be required, or could be used to pre-allocate some
+ ** number of PCB structures for future use.
+ */
+
+ pcb_t *ptr = ptable;
+ for( int i = 0; i < N_PROCS; ++i ) {
+ pcb_free( ptr );
+ ++ptr;
+ }
+}
+
+/**
+** Name: pcb_alloc
+**
+** Allocate a PCB from the list of free PCBs.
+**
+** @param pcb Pointer to a pcb_t * where the PCB pointer will be returned.
+**
+** @return status of the allocation attempt
+*/
+int pcb_alloc( pcb_t **pcb ) {
+
+ // sanity check!
+ assert1( pcb != NULL );
+
+ // remove the first PCB from the free list
+ pcb_t *tmp;
+ if( pcb_queue_remove(pcb_freelist,&tmp) != SUCCESS ) {
+ return E_NO_PCBS;
+ }
+
+ *pcb = tmp;
+ return SUCCESS;
+}
+
+/**
+** Name: pcb_free
+**
+** Return a PCB to the list of free PCBs.
+**
+** @param pcb Pointer to the PCB to be deallocated.
+*/
+void pcb_free( pcb_t *pcb ) {
+
+ if( pcb != NULL ) {
+ // mark the PCB as available
+ pcb->state = STATE_UNUSED;
+
+ // add it to the free list
+ int status = pcb_queue_insert( pcb_freelist, pcb );
+
+ // if that failed, we're in trouble
+ if( status != SUCCESS ) {
+ sprint( b256, "pcb_free(0x%08x) status %d", (uint32_t) pcb,
+ status );
+ PANIC( 0, b256 );
+ }
+ }
+}
+
+/**
+** Name: pcb_zombify
+**
+** Turn the indicated process into a Zombie. This function
+** does most of the real work for exit() and kill() calls.
+** Is also called from the scheduler and dispatcher.
+**
+** @param pcb Pointer to the newly-undead PCB
+*/
+void pcb_zombify( register pcb_t *victim ) {
+
+ // should this be an error?
+ if( victim == NULL ) {
+ return;
+ }
+
+ // every process must have a parent, even if it's 'init'
+ assert( victim->parent != NULL );
+
+ /*
+ ** We need to locate the parent of this process. We also need
+ ** to reparent any children of this process. We do these in
+ ** a single loop.
+ */
+ pcb_t *parent = victim->parent;
+ pcb_t *zchild = NULL;
+
+ // two PIDs we will look for
+ uint_t vicpid = victim->pid;
+
+ // speed up access to the process table entries
+ register pcb_t *curr = ptable;
+
+ for( int i = 0; i < N_PROCS; ++i, ++curr ) {
+
+ // make sure this is a valid entry
+ if( curr->state == STATE_UNUSED ) {
+ continue;
+ }
+
+ // if this is our parent, just keep going - we continue
+ // iterating to find all the children of this process.
+ if( curr == parent ) {
+ continue;
+ }
+
+ if( curr->parent == victim ) {
+
+ // found a child - reparent it
+ curr->parent = init_pcb;
+
+ // see if this child is already undead
+ if( curr->state == STATE_ZOMBIE ) {
+ // if it's already a zombie, remember it, so we
+ // can pass it on to 'init'; also, if there are
+ // two or more zombie children, it doesn't matter
+ // which one we pick here, as the others will be
+ // collected when 'init' loops
+ zchild = curr;
+ }
+
+ }
+ }
+
+ /*
+ ** If we found a child that was already terminated, we need to
+ ** wake up the init process if it's already waiting.
+ **
+ ** Note: we only need to do this for one Zombie child process -
+ ** init will loop and collect the others after it finishes with
+ ** this one.
+ **
+ ** Also note: it's possible that the exiting process' parent is
+ ** also init, which means we're letting one of zombie children
+ ** of the exiting process be cleaned up by init before the
+ ** existing process itself is cleaned up by init. This will work,
+ ** because after init cleans up the zombie, it will loop and
+ ** call waitpid() again, by which time this exiting process will
+ ** be marked as a zombie.
+ */
+ if( zchild != NULL && init_pcb->state == STATE_WAITING ) {
+
+ // dequeue the zombie
+ assert( pcb_queue_remove_this(zombie,zchild) == SUCCESS );
+
+ assert( pcb_queue_remove_this(waiting,init_pcb) == SUCCESS );
+
+ // intrinsic return value is the PID
+ RET(init_pcb) = zchild->pid;
+
+ // may also want to return the exit status
+ int32_t *ptr = (int32_t *) ARG(init_pcb,2);
+
+ if( ptr != NULL ) {
+ // ********************************************************
+ // ** Potential VM issue here! This code assigns the exit
+ // ** status into a variable in the parent's address space.
+ // ** This works in the baseline because we aren't using
+ // ** any type of memory protection. If address space
+ // ** separation is implemented, this code will very likely
+ // ** STOP WORKING, and will need to be fixed.
+ // ********************************************************
+ *ptr = zchild->exit_status;
+ }
+
+ // all done - schedule 'init', and clean up the zombie
+ schedule( init_pcb );
+ pcb_cleanup( zchild );
+ }
+
+ /*
+ ** Now, deal with the parent of this process. If the parent is
+ ** already waiting, just wake it up and clean up this process.
+ ** Otherwise, this process becomes a zombie.
+ **
+ ** Note: if the exiting process' parent is init and we just woke
+ ** init up to deal with a zombie child of the exiting process,
+ ** init's status won't be Waiting any more, so we don't have to
+ ** worry about it being scheduled twice.
+ */
+
+ if( parent->state == STATE_WAITING ) {
+
+ // verify that the parent is either waiting for this process
+ // or is waiting for any of its children
+ uint32_t target = ARG(parent,1);
+
+ if( target == 0 || target == vicpid ) {
+
+ // the parent is waiting for this child or is waiting
+ // for any of its children, so we can wake it up.
+
+ // intrinsic return value is the PID
+ RET(parent) = vicpid;
+
+ // may also want to return the exit status
+ int32_t *ptr = (int32_t *) ARG(parent,2);
+
+ if( ptr != NULL ) {
+ // ********************************************************
+ // ** Potential VM issue here! This code assigns the exit
+ // ** status into a variable in the parent's address space.
+ // ** This works in the baseline because we aren't using
+ // ** any type of memory protection. If address space
+ // ** separation is implemented, this code will very likely
+ // ** STOP WORKING, and will need to be fixed.
+ // ********************************************************
+ *ptr = victim->exit_status;
+ }
+
+ // all done - schedule the parent, and clean up the zombie
+ schedule( parent );
+ pcb_cleanup( victim );
+
+ return;
+ }
+ }
+
+ /*
+ ** The parent isn't waiting OR is waiting for a specific child
+ ** that isn't this exiting process, so we become a Zombie.
+ **
+ ** This code assumes that Zombie processes are *not* in
+ ** a queue, but instead are just in the process table with
+ ** a state of 'Zombie'. This simplifies life immensely,
+ ** because we won't need to dequeue it when it is collected
+ ** by its parent.
+ */
+
+ victim->state = STATE_ZOMBIE;
+ assert( pcb_queue_insert(zombie,victim) == SUCCESS );
+
+ /*
+ ** Note: we don't call _dispatch() here - we leave that for
+ ** the calling routine, as it's possible we don't need to
+ ** choose a new current process.
+ */
+}
+
+/**
+** Name: pcb_cleanup
+**
+** Reclaim a process' data structures
+**
+** @param pcb The PCB to reclaim
+*/
+void pcb_cleanup( pcb_t *pcb ) {
+
+#if TRACING_PCB
+ cio_printf( "** pcb_cleanup(0x%08x)\n", (uint32_t) pcb );
+#endif
+
+ // avoid deallocating a NULL pointer
+ if( pcb == NULL ) {
+ // should this be an error?
+ return;
+ }
+
+ // we need to release all the VM data structures and frames
+ user_cleanup( pcb );
+
+ // release the PCB itself
+ pcb_free( pcb );
+}
+
+/**
+** Name: pcb_find_pid
+**
+** Locate the PCB for the process with the specified PID
+**
+** @param pid The PID to be located
+**
+** @return Pointer to the PCB, or NULL
+*/
+pcb_t *pcb_find_pid( uint_t pid ) {
+
+ // must be a valid PID
+ if( pid < 1 ) {
+ return NULL;
+ }
+
+ // scan the process table
+ pcb_t *p = ptable;
+
+ for( int i = 0; i < N_PROCS; ++i, ++p ) {
+ if( p->pid == pid && p->state != STATE_UNUSED ) {
+ return p;
+ }
+ }
+
+ // didn't find it!
+ return NULL;
+}
+
+/**
+** Name: pcb_find_ppid
+**
+** Locate the PCB for the process with the specified parent
+**
+** @param pid The PID to be located
+**
+** @return Pointer to the PCB, or NULL
+*/
+pcb_t *pcb_find_ppid( uint_t pid ) {
+
+ // must be a valid PID
+ if( pid < 1 ) {
+ return NULL;
+ }
+
+ // scan the process table
+ pcb_t *p = ptable;
+
+ for( int i = 0; i < N_PROCS; ++i, ++p ) {
+ assert1( p->parent != NULL );
+ if( p->parent->pid == pid && p->parent->state != STATE_UNUSED ) {
+ return p;
+ }
+ }
+
+ // didn't find it!
+ return NULL;
+}
+
+/**
+** Name: pcb_queue_reset
+**
+** Initialize a PCB queue. We assume that whatever data may be
+** in the queue structure can be overwritten.
+**
+** @param queue[out] The queue to be initialized
+** @param order[in] The desired ordering for the queue
+**
+** @return status of the init request
+*/
+int pcb_queue_reset( pcb_queue_t queue, enum pcb_queue_order_e style ) {
+
+ // sanity check
+ assert1( queue != NULL );
+
+ // make sure the style is valid
+ if( style < O_FIRST_STYLE || style > O_LAST_STYLE ) {
+ return E_BAD_PARAM;
+ }
+
+ // reset the queue
+ queue->head = queue->tail = NULL;
+ queue->order = style;
+
+ return SUCCESS;
+}
+
+/**
+** Name: pcb_queue_empty
+**
+** Determine whether a queue is empty. Essentially just a wrapper
+** for the PCB_QUEUE_EMPTY() macro, for use outside this module.
+**
+** @param[in] queue The queue to check
+**
+** @return true if the queue is empty, else false
+*/
+bool_t pcb_queue_empty( pcb_queue_t queue ) {
+
+ // if there is no queue, blow up
+ assert1( queue != NULL );
+
+ return PCB_QUEUE_EMPTY(queue);
+}
+
+/**
+** Name: pcb_queue_length
+**
+** Return the count of elements in the specified queue.
+**
+** @param[in] queue The queue to check
+**
+** @return the count (0 if the queue is empty)
+*/
+uint_t pcb_queue_length( const pcb_queue_t queue ) {
+
+ // sanity check
+ assert1( queue != NULL );
+
+ // this is pretty simple
+ register pcb_t *tmp = queue->head;
+ register int num = 0;
+
+ while( tmp != NULL ) {
+ ++num;
+ tmp = tmp->next;
+ }
+
+ return num;
+}
+
+/**
+** Name: pcb_queue_insert
+**
+** Inserts a PCB into the indicated queue.
+**
+** @param queue[in,out] The queue to be used
+** @param pcb[in] The PCB to be inserted
+**
+** @return status of the insertion request
+*/
+int pcb_queue_insert( pcb_queue_t queue, pcb_t *pcb ) {
+
+ // sanity checks
+ assert1( queue != NULL );
+ assert1( pcb != NULL );
+
+ // if this PCB is already in a queue, we won't touch it
+ if( pcb->next != NULL ) {
+ // what to do? we let the caller decide
+ return E_BAD_PARAM;
+ }
+
+ // is the queue empty?
+ if( queue->head == NULL ) {
+ queue->head = queue->tail = pcb;
+ return SUCCESS;
+ }
+ assert1( queue->tail != NULL );
+
+ // no, so we need to search it
+ pcb_t *prev = NULL;
+
+ // find the predecessor node
+ switch( queue->order ) {
+ case O_FIFO:
+ prev = queue->tail;
+ break;
+ case O_PRIO:
+ prev = find_prev_priority(queue,pcb);
+ break;
+ case O_PID:
+ prev = find_prev_pid(queue,pcb);
+ break;
+ case O_WAKEUP:
+ prev = find_prev_wakeup(queue,pcb);
+ break;
+ default:
+ // do we need something more specific here?
+ return E_BAD_PARAM;
+ }
+
+ // OK, we found the predecessor node; time to do the insertion
+
+ if( prev == NULL ) {
+
+ // there is no predecessor, so we're
+ // inserting at the front of the queue
+ pcb->next = queue->head;
+ if( queue->head == NULL ) {
+ // empty queue!?! - should we panic?
+ queue->tail = pcb;
+ }
+ queue->head = pcb;
+
+ } else if( prev->next == NULL ) {
+
+ // append at end
+ prev->next = pcb;
+ queue->tail = pcb;
+
+ } else {
+
+ // insert between prev & prev->next
+ pcb->next = prev->next;
+ prev->next = pcb;
+
+ }
+
+ return SUCCESS;
+}
+
+/**
+** Name: pcb_queue_remove
+**
+** Remove the first PCB from the indicated queue.
+**
+** @param queue[in,out] The queue to be used
+** @param pcb[out] Pointer to where the PCB pointer will be saved
+**
+** @return status of the removal request
+*/
+int pcb_queue_remove( pcb_queue_t queue, pcb_t **pcb ) {
+
+ //sanity checks
+ assert1( queue != NULL );
+ assert1( pcb != NULL );
+
+ // can't get anything if there's nothing to get!
+ if( PCB_QUEUE_EMPTY(queue) ) {
+ return E_EMPTY_QUEUE;
+ }
+
+ // take the first entry from the queue
+ pcb_t *tmp = queue->head;
+ queue->head = tmp->next;
+
+ // disconnect it completely
+ tmp->next = NULL;
+
+ // was this the last thing in the queue?
+ if( queue->head == NULL ) {
+ // yes, so clear the tail pointer for consistency
+ queue->tail = NULL;
+ }
+
+ // save the pointer
+ *pcb = tmp;
+
+ return SUCCESS;
+}
+
+/**
+** Name: pcb_queue_remove_this
+**
+** Remove the specified PCB from the indicated queue.
+**
+** We don't return the removed pointer, because the calling
+** routine must already have it (because it was supplied
+** to us in the call).
+**
+** @param queue[in,out] The queue to be used
+** @param pcb[in] Pointer to the PCB to be removed
+**
+** @return status of the removal request
+*/
+int pcb_queue_remove_this( pcb_queue_t queue, pcb_t *pcb ) {
+
+ //sanity checks
+ assert1( queue != NULL );
+ assert1( pcb != NULL );
+
+ // can't get anything if there's nothing to get!
+ if( PCB_QUEUE_EMPTY(queue) ) {
+ return E_EMPTY_QUEUE;
+ }
+
+ // iterate through the queue until we find the desired PCB
+ pcb_t *prev = NULL;
+ pcb_t *curr = queue->head;
+
+ while( curr != NULL && curr != pcb ) {
+ prev = curr;
+ curr = curr->next;
+ }
+
+ // case prev curr next interpretation
+ // ==== ==== ==== ==== ============================
+ // 1. 0 0 -- *** CANNOT HAPPEN ***
+ // 2. 0 !0 0 removing only element
+ // 3. 0 !0 !0 removing first element
+ // 4. !0 0 -- *** NOT FOUND ***
+ // 5. !0 !0 0 removing from end
+ // 6. !0 !0 !0 removing from middle
+
+ if( curr == NULL ) {
+ // case 1
+ assert( prev != NULL );
+ // case 4
+ return E_NOT_FOUND;
+ }
+
+ // connect predecessor to successor
+ if( prev != NULL ) {
+ // not the first element
+ // cases 5 and 6
+ prev->next = curr->next;
+ } else {
+ // removing first element
+ // cases 2 and 3
+ queue->head = curr->next;
+ }
+
+ // if this was the last node (cases 2 and 5),
+ // also need to reset the tail pointer
+ if( curr->next == NULL ) {
+ // if this was the only entry (2), prev is NULL,
+ // so this works for that case, too
+ queue->tail = prev;
+ }
+
+ // unlink current from queue
+ curr->next = NULL;
+
+ // there's a possible consistancy problem here if somehow
+ // one of the queue pointers is NULL and the other one
+ // is not NULL
+
+ assert1(
+ (queue->head == NULL && queue->tail == NULL) ||
+ (queue->head != NULL && queue->tail != NULL)
+ );
+
+ return SUCCESS;
+}
+
+/**
+** Name: pcb_queue_peek
+**
+** Return the first PCB from the indicated queue, but don't
+** remove it from the queue.
+**
+** @param queue[in] The queue to be used
+**
+** @return the PCB poiner, or NULL if the queue is empty
+*/
+pcb_t *pcb_queue_peek( const pcb_queue_t queue ) {
+
+ //sanity check
+ assert1( queue != NULL );
+
+ // can't get anything if there's nothing to get!
+ if( PCB_QUEUE_EMPTY(queue) ) {
+ return NULL;
+ }
+
+ // just return the first entry from the queue
+ return queue->head;
+}
+
+/*
+** Scheduler routines
+*/
+
+/**
+** schedule(pcb)
+**
+** Schedule the supplied process
+**
+** @param pcb Pointer to the PCB of the process to be scheduled
+*/
+void schedule( pcb_t *pcb ) {
+
+ // sanity check
+ assert1( pcb != NULL );
+
+ // check for a killed process
+ if( pcb->state == STATE_KILLED ) {
+ // TODO figure out what to do now
+ return;
+ }
+
+ // mark it as ready
+ pcb->state = STATE_READY;
+
+ // add it to the ready queue
+ if( pcb_queue_insert(ready,pcb) != SUCCESS ) {
+ PANIC( 0, "schedule insert fail" );
+ }
+}
+
+/**
+** dispatch()
+**
+** Select the next process to receive the CPU
+*/
+void dispatch( void ) {
+
+ // verify that there is no current process
+ assert( current == NULL );
+
+ // grab whoever is at the head of the queue
+ int status = pcb_queue_remove( ready, &current );
+ if( status != SUCCESS ) {
+ sprint( b256, "dispatch queue remove failed, code %d", status );
+ PANIC( 0, b256 );
+ }
+
+ // set the process up for success
+ current->state = STATE_RUNNING;
+ current->ticks = QUANTUM_STANDARD;
+}
+
+
+/*
+** Debugging/tracing routines
+*/
+
+/**
+** ctx_dump(msg,context)
+**
+** Dumps the contents of this process context to the console
+**
+** @param msg[in] An optional message to print before the dump
+** @param c[in] The context to dump out
+*/
+void ctx_dump( const char *msg, register context_t *c ) {
+
+ // first, the message (if there is one)
+ if( msg ) {
+ cio_puts( msg );
+ }
+
+ // the pointer
+ cio_printf( " @ %08x: ", (uint32_t) c );
+
+ // if it's NULL, why did you bother calling me?
+ if( c == NULL ) {
+ cio_puts( " NULL???\n" );
+ return;
+ }
+
+ // now, the contents
+ cio_printf( "ss %04x gs %04x fs %04x es %04x ds %04x cs %04x\n",
+ c->ss & 0xff, c->gs & 0xff, c->fs & 0xff,
+ c->es & 0xff, c->ds & 0xff, c->cs & 0xff );
+ cio_printf( " edi %08x esi %08x ebp %08x esp %08x\n",
+ c->edi, c->esi, c->ebp, c->esp );
+ cio_printf( " ebx %08x edx %08x ecx %08x eax %08x\n",
+ c->ebx, c->edx, c->ecx, c->eax );
+ cio_printf( " vec %08x cod %08x eip %08x eflags %08x\n",
+ c->vector, c->code, c->eip, c->eflags );
+}
+
+/**
+** ctx_dump_all(msg)
+**
+** dump the process context for all active processes
+**
+** @param msg[in] Optional message to print
+*/
+void ctx_dump_all( const char *msg ) {
+
+ if( msg != NULL ) {
+ cio_puts( msg );
+ }
+
+ int n = 0;
+ register pcb_t *pcb = ptable;
+ for( int i = 0; i < N_PROCS; ++i, ++pcb ) {
+ if( pcb->state != STATE_UNUSED ) {
+ ++n;
+ cio_printf( "%2d(%d): ", n, pcb->pid );
+ ctx_dump( NULL, pcb->context );
+ }
+ }
+}
+
+/**
+** _pcb_dump(msg,pcb)
+**
+** Dumps the contents of this PCB to the console
+**
+** @param msg[in] An optional message to print before the dump
+** @param pcb[in] The PCB to dump
+** @param all[in] Dump all the contents?
+*/
+void pcb_dump( const char *msg, register pcb_t *pcb, bool_t all ) {
+
+ // first, the message (if there is one)
+ if( msg ) {
+ cio_puts( msg );
+ }
+
+ // the pointer
+ cio_printf( " @ %08x:", (uint32_t) pcb );
+
+ // if it's NULL, why did you bother calling me?
+ if( pcb == NULL ) {
+ cio_puts( " NULL???\n" );
+ return;
+ }
+
+ cio_printf( " %d", pcb->pid );
+ cio_printf( " %s",
+ pcb->state >= N_STATES ? "???" : state_str[pcb->state] );
+
+ if( !all ) {
+ // just printing IDs and states on one line
+ return;
+ }
+
+ // now, the rest of the contents
+ cio_printf( " %s",
+ pcb->priority >= N_PRIOS ? "???" : prio_str[pcb->priority] );
+
+ cio_printf( " ticks %u xit %d wake %08x\n",
+ pcb->ticks, pcb->exit_status, pcb->wakeup );
+
+ cio_printf( " parent %08x", (uint32_t)pcb->parent );
+ if( pcb->parent != NULL ) {
+ cio_printf( " (%u)", pcb->parent->pid );
+ }
+
+ cio_printf( " next %08x context %08x pde %08x", (uint32_t) pcb->next,
+ (uint32_t) pcb->context, (uint32_t) pcb->pdir );
+
+ cio_putchar( '\n' );
+}
+
+/**
+** pcb_queue_dump(msg,queue,contents)
+**
+** Dump the contents of the specified queue to the console
+**
+** @param msg[in] Optional message to print
+** @param queue[in] The queue to dump
+** @param contents[in] Also dump (some) contents?
+*/
+void pcb_queue_dump( const char *msg, pcb_queue_t queue, bool_t contents ) {
+
+ // report on this queue
+ cio_printf( "%s: ", msg );
+ if( queue == NULL ) {
+ cio_puts( "NULL???\n" );
+ return;
+ }
+
+ // first, the basic data
+ cio_printf( "head %08x tail %08x",
+ (uint32_t) queue->head, (uint32_t) queue->tail );
+
+ // next, how the queue is ordered
+ cio_printf( " order %s\n",
+ queue->order >= N_ORDERINGS ? "????" : ord_str[queue->order] );
+
+ // if there are members in the queue, dump the first few PIDs
+ if( contents && queue->head != NULL ) {
+ cio_puts( " PIDs: " );
+ pcb_t *tmp = queue->head;
+ for( int i = 0; i < 5 && tmp != NULL; ++i, tmp = tmp->next ) {
+ cio_printf( " [%u]", tmp->pid );
+ }
+
+ if( tmp != NULL ) {
+ cio_puts( " ..." );
+ }
+
+ cio_putchar( '\n' );
+ }
+}
+
+/**
+** ptable_dump(msg,all)
+**
+** dump the contents of the "active processes" table
+**
+** @param msg[in] Optional message to print
+** @param all[in] Dump all or only part of the relevant data
+*/
+void ptable_dump( const char *msg, bool_t all ) {
+
+ if( msg ) {
+ cio_puts( msg );
+ }
+ cio_putchar( ' ' );
+
+ int used = 0;
+ int empty = 0;
+
+ register pcb_t *pcb = ptable;
+ for( int i = 0; i < N_PROCS; ++i ) {
+ if( pcb->state == STATE_UNUSED ) {
+
+ // an empty slot
+ ++empty;
+
+ } else {
+
+ // a non-empty slot
+ ++used;
+
+ // if not dumping everything, add commas if needed
+ if( !all && used ) {
+ cio_putchar( ',' );
+ }
+
+ // report the table slot #
+ cio_printf( " #%d:", i );
+
+ // and dump the contents
+ pcb_dump( NULL, pcb, all );
+ }
+ }
+
+ // only need this if we're doing one-line output
+ if( !all ) {
+ cio_putchar( '\n' );
+ }
+
+ // sanity check - make sure we saw the correct number of table slots
+ if( (used + empty) != N_PROCS ) {
+ cio_printf( "Table size %d, used %d + empty %d = %d???\n",
+ N_PROCS, used, empty, used + empty );
+ }
+}
+
+/**
+** Name: ptable_dump_counts
+**
+** Prints basic information about the process table (number of
+** entries, number with each process state, etc.).
+*/
+void ptable_dump_counts( void ) {
+ uint_t nstate[N_STATES] = { 0 };
+ uint_t unknown = 0;
+
+ int n = 0;
+ pcb_t *ptr = ptable;
+ while( n < N_PROCS ) {
+ if( ptr->state < 0 || ptr->state >= N_STATES ) {
+ ++unknown;
+ } else {
+ ++nstate[ptr->state];
+ }
+ ++n;
+ ++ptr;
+ }
+
+ cio_printf( "Ptable: %u ***", unknown );
+ for( n = 0; n < N_STATES; ++n ) {
+ cio_printf( " %u %s", nstate[n],
+ state_str[n] != NULL ? state_str[n] : "???" );
+ }
+ cio_putchar( '\n' );
+}
diff --git a/kernel/sio.c b/kernel/sio.c
new file mode 100644
index 0000000..a5c7b75
--- /dev/null
+++ b/kernel/sio.c
@@ -0,0 +1,694 @@
+/**
+** @file sio.c
+**
+** @author Warren R. Carithers
+**
+** @brief SIO module
+**
+** For maximum compatibility from semester to semester, this code uses
+** several "stand-in" type names and macros which should be defined
+** in the accompanying "compat.h" header file if they're not part of
+** the baseline system:
+**
+** standard-sized integer types: intN_t, uintN_t
+** other types: PCBTYPE, QTYPE
+** scheduler functions: SCHED, DISPATCH
+** queue functions: QCREATE, QLENGTH, QDEQUE
+** other functions: SLENGTH
+** sio read queue: QNAME
+**
+** Our SIO scheme is very simple:
+**
+** Input: We maintain a buffer of incoming characters that haven't
+** yet been read by processes. When a character comes in, if
+** there is no process waiting for it, it goes in the buffer;
+** otherwise, the first waiting process is awakeneda and it
+** gets the character.
+**
+** When a process invokes readch(), if there is a character in
+** the input buffer, the process gets it; otherwise, it is
+** blocked until input appears
+**
+** Communication with system calls is via two routines.
+** sio_readc() returns the first available character (if
+** there is one), resetting the input variables if this was
+** the last character in the buffer. If there are no
+** characters in the buffer, sio_read() returns a -1
+** (presumably so the requesting process can be blocked).
+**
+** sio_read() copies the contents of the input buffer into
+** a user-supplied buffer. It returns the number of characters
+** copied. If there are no characters available, return a -1.
+**
+** Output: We maintain a buffer of outgoing characters that haven't
+** yet been sent to the device, and an indication of whether
+** or not we are in the middle of a transmit sequence. When
+** an interrupt comes in, if there is another character to
+** send we copy it to the transmitter buffer; otherwise, we
+** end the transmit sequence.
+**
+** Communication with user processes is via three functions.
+** sio_writec() writes a single character; sio_write()
+** writes a sized buffer full of characters; sio_puts()
+** prints a NUL-terminated string. If we are in the middle
+** of a transmit sequence, all characters will be added
+** to the output buffer (from where they will be sent
+** automatically); otherwise, we send the first character
+** directly, add the rest of the characters (if there are
+** any) to the output buffer, and set the "sending" flag
+** to indicate that we're expecting a transmitter interrupt.
+*/
+
+#define KERNEL_SRC
+
+// this should do all includes required for this OS
+#include <compat.h>
+
+// all other framework includes are next
+#include <x86/uart.h>
+#include <x86/arch.h>
+#include <x86/pic.h>
+
+#include <sio.h>
+#include <lib.h>
+
+/*
+** PRIVATE DEFINITIONS
+*/
+
+#define BUF_SIZE 2048
+
+/*
+** PRIVATE GLOBALS
+*/
+
+ // input character buffer
+static char inbuffer[ BUF_SIZE ];
+static char *inlast;
+static char *innext;
+static uint32_t incount;
+
+ // output character buffer
+static char outbuffer[ BUF_SIZE ];
+static char *outlast;
+static char *outnext;
+static uint32_t outcount;
+
+ // output control flag
+static int sending;
+
+ // interrupt register status
+static uint8_t ier;
+
+/*
+** PUBLIC GLOBAL VARIABLES
+*/
+
+// queue for read-blocked processes
+#ifdef QNAME
+QTYPE QNAME;
+#endif
+
+/*
+** PRIVATE FUNCTIONS
+*/
+
+/**
+** sio_isr(vector,ecode)
+**
+** Interrupt handler for the SIO module. Handles all pending
+** events (as described by the SIO controller).
+**
+** @param vector The interrupt vector number for this interrupt
+** @param ecode The error code associated with this interrupt
+*/
+static void sio_isr( int vector, int ecode ) {
+ int ch;
+
+#if TRACING_SIO_ISR
+ cio_puts( "SIO: int:" );
+#endif
+ //
+ // Must process all pending events; loop until the IRR
+ // says there's nothing else to do.
+ //
+
+ for(;;) {
+
+ // get the "pending event" indicator
+ int iir = inb( UA4_IIR ) & UA4_IIR_INT_PRI_MASK;
+
+ // process this event
+ switch( iir ) {
+
+ case UA4_IIR_LINE_STATUS:
+ // shouldn't happen, but just in case....
+ cio_printf( "** SIO int, LSR = %02x\n", inb(UA4_LSR) );
+ break;
+
+ case UA4_IIR_RX:
+#if TRACING_SIO_ISR
+ cio_puts( " RX" );
+#endif
+ // get the character
+ ch = inb( UA4_RXD );
+ if( ch == '\r' ) { // map CR to LF
+ ch = '\n';
+ }
+#if TRACING_SIO_ISR
+ cio_printf( " ch %02x", ch );
+#endif
+
+#ifdef QNAME
+ //
+ // If there is a waiting process, this must be
+ // the first input character; give it to that
+ // process and awaken the process.
+ //
+
+ if( !QEMPTY(QNAME) ) {
+ PCBTYPE *pcb;
+
+ QDEQUE( QNAME, pcb );
+ // make sure we got a non-NULL result
+ assert( pcb );
+
+ // return char via arg #2 and count in EAX
+ char *buf = (char *) ARG(pcb,2);
+ *buf = ch & 0xff;
+ RET(pcb) = 1;
+ SCHED( pcb );
+
+ } else {
+#endif /* QNAME */
+
+ //
+ // Nobody waiting - add to the input buffer
+ // if there is room, otherwise just ignore it.
+ //
+
+ if( incount < BUF_SIZE ) {
+ *inlast++ = ch;
+ ++incount;
+ }
+
+#ifdef QNAME
+ }
+#endif /* QNAME */
+ break;
+
+ case UA5_IIR_RX_FIFO:
+ // shouldn't happen, but just in case....
+ ch = inb( UA4_RXD );
+ cio_printf( "** SIO FIFO timeout, RXD = %02x\n", ch );
+ break;
+
+ case UA4_IIR_TX:
+#if TRACING_SIO_ISR
+ cio_puts( " TX" );
+#endif
+ // if there is another character, send it
+ if( sending && outcount > 0 ) {
+#if TRACING_SIO_ISR
+ cio_printf( " ch %02x", *outnext );
+#endif
+ outb( UA4_TXD, *outnext );
+ ++outnext;
+ // wrap around if necessary
+ if( outnext >= (outbuffer + BUF_SIZE) ) {
+ outnext = outbuffer;
+ }
+ --outcount;
+#if TRACING_SIO_ISR
+ cio_printf( " (outcount %d)", outcount );
+#endif
+ } else {
+#if TRACING_SIO_ISR
+ cio_puts( " EOS" );
+#endif
+ // no more data - reset the output vars
+ outcount = 0;
+ outlast = outnext = outbuffer;
+ sending = 0;
+ // disable TX interrupts
+ sio_disable( SIO_TX );
+ }
+ break;
+
+ case UA4_IIR_NO_INT:
+#if TRACING_SIO_ISR
+ cio_puts( " EOI\n" );
+#endif
+ // nothing to do - tell the PIC we're done
+ outb( PIC1_CMD, PIC_EOI );
+ return;
+
+ case UA4_IIR_MODEM_STATUS:
+ // shouldn't happen, but just in case....
+ cio_printf( "** SIO int, MSR = %02x\n", inb(UA4_MSR) );
+ break;
+
+ default:
+ // uh-oh....
+ sprint( b256, "sio isr: IIR %02x\n", ((uint32_t) iir) & 0xff );
+ PANIC( 0, b256 );
+ }
+
+ }
+
+ // should never reach this point!
+ assert( false );
+}
+
+/*
+** PUBLIC FUNCTIONS
+*/
+
+/**
+** sio_init()
+**
+** Initialize the UART chip.
+*/
+void sio_init( void ) {
+
+#if TRACING_INIT
+ cio_puts( " Sio" );
+#endif
+
+ /*
+ ** Initialize SIO variables.
+ */
+
+ memclr( (void *) inbuffer, sizeof(inbuffer) );
+ inlast = innext = inbuffer;
+ incount = 0;
+
+ memclr( (void *) outbuffer, sizeof(outbuffer) );
+ outlast = outnext = outbuffer;
+ outcount = 0;
+ sending = 0;
+
+ // queue of read-blocked processes
+ QCREATE( QNAME );
+
+ /*
+ ** Next, initialize the UART.
+ **
+ ** Initialize the FIFOs
+ **
+ ** this is a bizarre little sequence of operations
+ */
+
+ outb( UA5_FCR, 0x20 );
+ outb( UA5_FCR, UA5_FCR_FIFO_RESET ); // 0x00
+ outb( UA5_FCR, UA5_FCR_FIFO_EN ); // 0x01
+ outb( UA5_FCR, UA5_FCR_FIFO_EN | UA5_FCR_RXSR ); // 0x03
+ outb( UA5_FCR, UA5_FCR_FIFO_EN | UA5_FCR_RXSR | UA5_FCR_TXSR ); // 0x07
+
+ /*
+ ** disable interrupts
+ **
+ ** note that we leave them disabled; sio_enable() must be
+ ** called to switch them back on
+ */
+
+ outb( UA4_IER, 0 );
+ ier = 0;
+
+ /*
+ ** select the divisor latch registers and set the data rate
+ */
+
+ outb( UA4_LCR, UA4_LCR_DLAB );
+ outb( UA4_DLL, BAUD_LOW_BYTE( DL_BAUD_9600 ) );
+ outb( UA4_DLM, BAUD_HIGH_BYTE( DL_BAUD_9600 ) );
+
+ /*
+ ** deselect the latch registers, by setting the data
+ ** characteristics in the LCR
+ */
+
+ outb( UA4_LCR, UA4_LCR_WLS_8 | UA4_LCR_1_STOP_BIT | UA4_LCR_NO_PARITY );
+
+ /*
+ ** Set the ISEN bit to enable the interrupt request signal,
+ ** and the DTR and RTS bits to enable two-way communication.
+ */
+
+ outb( UA4_MCR, UA4_MCR_ISEN | UA4_MCR_DTR | UA4_MCR_RTS );
+
+ /*
+ ** Install our ISR
+ */
+
+ install_isr( VEC_COM1, sio_isr );
+}
+
+/**
+** sio_enable()
+**
+** Enable SIO interrupts
+**
+** usage: uint8_t old = sio_enable( uint8_t which )
+**
+** @param which Bit mask indicating which interrupt(s) to enable
+**
+** @return the prior IER setting
+*/
+uint8_t sio_enable( uint8_t which ) {
+ uint8_t old;
+
+ // remember the current status
+
+ old = ier;
+
+ // figure out what to enable
+
+ if( which & SIO_TX ) {
+ ier |= UA4_IER_TX_IE;
+ }
+
+ if( which & SIO_RX ) {
+ ier |= UA4_IER_RX_IE;
+ }
+
+ // if there was a change, make it
+
+ if( old != ier ) {
+ outb( UA4_IER, ier );
+ }
+
+ // return the prior settings
+
+ return( old );
+}
+
+/**
+** sio_disable()
+**
+** Disable SIO interrupts
+**
+** usage: uint8_t old = sio_disable( uint8_t which )
+**
+** @param which Bit mask indicating which interrupt(s) to disable
+**
+** @return the prior IER setting
+*/
+uint8_t sio_disable( uint8_t which ) {
+ uint8_t old;
+
+ // remember the current status
+
+ old = ier;
+
+ // figure out what to disable
+
+ if( which & SIO_TX ) {
+ ier &= ~UA4_IER_TX_IE;
+ }
+
+ if( which & SIO_RX ) {
+ ier &= ~UA4_IER_RX_IE;
+ }
+
+ // if there was a change, make it
+
+ if( old != ier ) {
+ outb( UA4_IER, ier );
+ }
+
+ // return the prior settings
+
+ return( old );
+}
+
+/**
+** sio_inq_length()
+**
+** Get the input queue length
+**
+** usage: int num = sio_inq_length()
+**
+** @return the count of characters still in the input queue
+*/
+int sio_inq_length( void ) {
+ return( incount );
+}
+
+/**
+** sio_readc()
+**
+** Get the next input character
+**
+** usage: int ch = sio_readc()
+**
+** @return the next character, or -1 if no character is available
+*/
+int sio_readc( void ) {
+ int ch;
+
+ // assume there is no character available
+ ch = -1;
+
+ //
+ // If there is a character, return it
+ //
+
+ if( incount > 0 ) {
+
+ // take it out of the input buffer
+ ch = ((int)(*innext++)) & 0xff;
+ --incount;
+
+ // reset the buffer variables if this was the last one
+ if( incount < 1 ) {
+ inlast = innext = inbuffer;
+ }
+
+ }
+
+ return( ch );
+
+}
+
+/**
+** sio_read(buf,length)
+**
+** Read the entire input buffer into a user buffer of a specified size
+**
+** usage: int num = sio_read( char *buffer, int length )
+**
+** @param buf The destination buffer
+** @param length Length of the buffer
+**
+** @return the number of bytes copied, or 0 if no characters were available
+*/
+
+int sio_read( char *buf, int length ) {
+ char *ptr = buf;
+ int copied = 0;
+
+ // if there are no characters, just return 0
+
+ if( incount < 1 ) {
+ return( 0 );
+ }
+
+ //
+ // We have characters. Copy as many of them into the user
+ // buffer as will fit.
+ //
+
+ while( incount > 0 && copied < length ) {
+ *ptr++ = *innext++ & 0xff;
+ if( innext > (inbuffer + BUF_SIZE) ) {
+ innext = inbuffer;
+ }
+ --incount;
+ ++copied;
+ }
+
+ // reset the input buffer if necessary
+
+ if( incount < 1 ) {
+ inlast = innext = inbuffer;
+ }
+
+ // return the copy count
+
+ return( copied );
+}
+
+
+/**
+** sio_writec( ch )
+**
+** Write a character to the serial output
+**
+** usage: sio_writec( int ch )
+**
+** @param ch Character to be written (in the low-order 8 bits)
+*/
+void sio_writec( int ch ){
+
+
+ //
+ // Must do LF -> CRLF mapping
+ //
+
+ if( ch == '\n' ) {
+ sio_writec( '\r' );
+ }
+
+ //
+ // If we're currently transmitting, just add this to the buffer
+ //
+
+ if( sending ) {
+ *outlast++ = ch;
+ ++outcount;
+ return;
+ }
+
+ //
+ // Not sending - must prime the pump
+ //
+
+ sending = 1;
+ outb( UA4_TXD, ch );
+
+ // Also must enable transmitter interrupts
+
+ sio_enable( SIO_TX );
+
+}
+
+/**
+** sio_write( buffer, length )
+**
+** Write a buffer of characters to the serial output
+**
+** usage: int num = sio_write( const char *buffer, int length )
+**
+** @param buffer Buffer containing characters to write
+** @param length Number of characters to write
+**
+** @return the number of characters copied into the SIO output buffer
+*/
+int sio_write( const char *buffer, int length ) {
+ int first = *buffer;
+ const char *ptr = buffer;
+ int copied = 0;
+
+ //
+ // If we are currently sending, we want to append all
+ // the characters to the output buffer; else, we want
+ // to append all but the first character, and then use
+ // sio_writec() to send the first one out.
+ //
+
+ if( !sending ) {
+ ptr += 1;
+ copied++;
+ }
+
+ while( copied < length && outcount < BUF_SIZE ) {
+ *outlast++ = *ptr++;
+ // wrap around if necessary
+ if( outlast >= (outbuffer + BUF_SIZE) ) {
+ outlast = outbuffer;
+ }
+ ++outcount;
+ ++copied;
+ }
+
+ //
+ // We use sio_writec() to send out the first character,
+ // as it will correctly set all the other necessary
+ // variables for us.
+ //
+
+ if( !sending ) {
+ sio_writec( first );
+ }
+
+ // Return the transfer count
+
+
+ return( copied );
+
+}
+
+/**
+** sio_puts( buf )
+**
+** Write a NUL-terminated buffer of characters to the serial output
+**
+** usage: int num = sio_puts( const char *buffer )
+**
+** @param buffer The buffer containing a NUL-terminated string
+**
+** @return the count of bytes transferred
+*/
+int sio_puts( const char *buffer ) {
+ int n; // must be outside the loop so we can return it
+
+ n = SLENGTH( buffer );
+ sio_write( buffer, n );
+
+ return( n );
+}
+
+/**
+** sio_dump( full )
+**
+** dump the contents of the SIO buffers to the console
+**
+** usage: sio_dump(true) or sio_dump(false)
+**
+** @param full Boolean indicating whether or not a "full" dump
+** is being requested (which includes the contents
+** of the queues)
+*/
+
+void sio_dump( bool_t full ) {
+ int n;
+ char *ptr;
+
+ // dump basic info into the status region
+
+ cio_printf_at( 48, 0,
+ "SIO: IER %02x (%c%c%c) in %d ot %d",
+ ((uint32_t)ier) & 0xff, sending ? '*' : '.',
+ (ier & UA4_IER_TX_IE) ? 'T' : 't',
+ (ier & UA4_IER_RX_IE) ? 'R' : 'r',
+ incount, outcount );
+
+ // if we're not doing a full dump, stop now
+
+ if( !full ) {
+ return;
+ }
+
+ // also want the queue contents, but we'll
+ // dump them into the scrolling region
+
+ if( incount ) {
+ cio_puts( "SIO input queue: \"" );
+ ptr = innext;
+ for( n = 0; n < incount; ++n ) {
+ put_char_or_code( *ptr++ );
+ }
+ cio_puts( "\"\n" );
+ }
+
+ if( outcount ) {
+ cio_puts( "SIO output queue: \"" );
+ cio_puts( " ot: \"" );
+ ptr = outnext;
+ for( n = 0; n < outcount; ++n ) {
+ put_char_or_code( *ptr++ );
+ }
+ cio_puts( "\"\n" );
+ }
+}
diff --git a/kernel/startup.S b/kernel/startup.S
new file mode 100644
index 0000000..1cae13c
--- /dev/null
+++ b/kernel/startup.S
@@ -0,0 +1,153 @@
+/*
+** @file startup.S
+**
+** @author Jon Coles
+** @authors Warren R. Carithers, K. Reek
+**
+** SP startup code.
+**
+** This code prepares the various registers for execution of
+** the program. It sets up all the segment registers and the
+** runtime stack. By the time this code is running, we're in
+** protected mode already.
+*/
+
+#define KERNEL_SRC
+#define ASM_SRC
+
+ .arch i386
+
+#include <common.h>
+#include <bootstrap.h>
+#include <x86/arch.h>
+#include <x86/bios.h>
+#include <vm.h>
+
+/*
+** Configuration options - define in Makefile
+**
+** CLEAR_BSS include code to clear all BSS space
+** OS_CONFIG OS-related (vs. just standalone) variations
+*/
+
+/*
+** A symbol for locating the beginning of the code.
+*/
+ .globl begtext
+
+ .text
+begtext:
+
+/*
+** The entry point. When we get here, we have just entered protected
+** mode, so all the segment registers are incorrect except for CS.
+*/
+ .globl _start
+
+_start:
+ cli /* seems to be reset on entry to p. mode */
+ movb $NMI_ENABLE, %al /* re-enable NMIs (bootstrap */
+ outb $CMOS_ADDR /* turned them off) */
+
+/*
+** Set the data and stack segment registers (code segment register
+** was set by the long jump that switched us into protected mode).
+*/
+ xorl %eax, %eax /* clear EAX */
+ movw $GDT_DATA, %ax /* GDT entry #3 - data segment */
+ movw %ax, %ds /* for all four data segment registers */
+ movw %ax, %es
+ movw %ax, %fs
+ movw %ax, %gs
+
+ movw $GDT_STACK, %ax /* entry #4 is the stack segment */
+ movw %ax, %ss
+
+ movl $TARGET_STACK, %esp /* set up the system stack pointer */
+
+#ifdef CLEAR_BSS
+/*
+** Zero the BSS segment
+**
+** These symbols are defined automatically by the linker, but they're
+** defined at their virtual addresses rather than their physical addresses,
+** and we haven't enabled paging yet.
+*/
+ .globl __bss_start, _end
+
+ movl $V2P(__bss_start), %edi
+clearbss:
+ movl $0, (%edi)
+ addl $4, %edi
+ cmpl $V2P(_end), %edi
+ jb clearbss
+#endif /* CLEAR_BSS */
+
+/*
+** Enable paging. We use "large" pages for the initial page directory
+** so that a one-level hierarchy will work for us. Once we have set
+** up our memory freelist, we'll create a two-level hierarchy using
+** "normal" 4KB pages.
+*/
+ # enable large pages
+ movl %cr4, %eax
+ orl $(CR4_PSE), %eax
+ movl %eax, %cr4
+
+ # set the page directory
+ .globl firstpdir
+ movl $(V2P(firstpdir)+0x1000), %eax
+ movl %eax, %cr3
+
+ # turn on paging
+ movl %cr0, %eax
+ orl $(CR0_PG), %eax
+ movl %eax, %cr0
+
+ # reset our stack pointer
+ movl $(kstack + SZ_KSTACK), %esp
+
+ # set the initial frame pointer
+ xorl %ebp, %ebp
+
+/*
+** Call the system initialization routine, and switch to
+** executing at high addresses. We use an indirect jump
+** here to avoid getting a PC-relative 'jmp' instruction.
+**
+** Alternate idea: push the address of isr_restore
+** and just do an indirect jump?
+*/
+ .globl main
+
+ movl $main, %eax
+ call *%eax
+
+/*
+** At this point, main() must have created the first user
+** process, and we're ready to shift into user mode. The user
+** stack for that process must have the initial context in it;
+** we treat this as a "return from interrupt" event, and just
+** transfer to the code that restores the user context.
+*/
+
+ .globl isr_restore
+ jmp isr_restore
+
+ .data
+
+/*
+** Define the kernel stack here, at a multiple-of-16 address
+*/
+ .p2align 4
+ .globl kstack
+kstack: .space SZ_KSTACK, 0
+
+/*
+** Define the initial kernel ESP here, as well. It should point
+** to the first byte after the stack.
+*/
+
+ .globl kernel_esp
+kernel_esp:
+ .long kstack + SZ_KSTACK
diff --git a/kernel/support.c b/kernel/support.c
new file mode 100644
index 0000000..d48ce59
--- /dev/null
+++ b/kernel/support.c
@@ -0,0 +1,279 @@
+/*
+** SCCS ID: @(#)support.c 2.6 1/22/25
+**
+** @file support.c
+**
+** @author 4003-506 class of 20003
+** @authors K. Reek, Warren R. Carithers
+**
+** Miscellaneous system initialization functions, interrupt
+** support routines, and data structures.
+*/
+
+#include <common.h>
+
+#include <support.h>
+#include <cio.h>
+#include <x86/arch.h>
+#include <x86/pic.h>
+#include <x86/ops.h>
+#include <bootstrap.h>
+#include <syscalls.h>
+
+/*
+** Global variables and local data types.
+*/
+
+/*
+** This is the table that contains pointers to the C-language ISR for
+** each interrupt. These functions are called from the isr stub based
+** on the interrupt number.
+*/
+void ( *isr_table[ 256 ] )( int vector, int code );
+
+/*
+** Format of an IDT entry.
+*/
+typedef struct {
+ short offset_15_0;
+ short segment_selector;
+ short flags;
+ short offset_31_16;
+} IDT_Gate;
+
+/*
+** LOCAL ROUTINES - not intended to be used outside this module.
+*/
+
+/**
+** unexpected_handler
+**
+** This routine catches interrupts that we do not expect to ever occur.
+** It handles them by (optionally) reporting them and then calling panic().
+**
+** @param vector vector number for the interrupt that occurred
+** @param code error code, or a dummy value
+**
+** Does not return.
+*/
+#ifdef RPT_INT_UNEXP
+/* add any header includes you need here */
+#endif
+static void unexpected_handler( int vector, int code ) {
+#ifdef RPT_INT_UNEXP
+ cio_printf( "\n** UNEXPECTED vector %d code %d\n", vector, code );
+#endif
+ panic( "Unexpected interrupt" );
+}
+
+/**
+** default_handler
+**
+** Default handler for interrupts we expect may occur but are not
+** handling (yet). We just reset the PIC and return.
+**
+** @param vector vector number for the interrupt that occurred
+** @param code error code, or a dummy value
+*/
+static void default_handler( int vector, int code ) {
+#ifdef RPT_INT_UNEXP
+ cio_printf( "\n** vector %d code %d\n", vector, code );
+#endif
+ if( vector >= 0x20 && vector < 0x30 ) {
+ if( vector > 0x27 ) {
+ // must also ACK the secondary PIC
+ outb( PIC2_CMD, PIC_EOI );
+ }
+ outb( PIC1_CMD, PIC_EOI );
+ } else {
+ /*
+ ** All the "expected" interrupts will be handled by the
+ ** code above. If we get down here, the isr table may
+ ** have been corrupted. Print a message and don't return.
+ */
+ panic( "Unexpected \"expected\" interrupt!" );
+ }
+}
+
+/**
+** mystery_handler
+**
+** Default handler for the "mystery" interrupt that comes through vector
+** 0x27. This is a non-repeatable interrupt whose source has not been
+** identified, but it appears to be the famous "spurious level 7 interrupt"
+** source.
+**
+** @param vector vector number for the interrupt that occurred
+** @param code error code, or a dummy value
+*/
+static void mystery_handler( int vector, int code ) {
+#if defined(RPT_INT_MYSTERY) || defined(RPT_INT_UNEXP)
+ cio_printf( "\nMystery interrupt!\nVector=0x%02x, code=%d\n",
+ vector, code );
+#endif
+ outb( PIC1_CMD, PIC_EOI );
+}
+
+/**
+** init_pic
+**
+** Initialize the 8259 Programmable Interrupt Controller.
+*/
+static void init_pic( void ) {
+ /*
+ ** ICW1: start the init sequence, update ICW4
+ */
+ outb( PIC1_CMD, PIC_CW1_INIT | PIC_CW1_NEED4 );
+ outb( PIC2_CMD, PIC_CW1_INIT | PIC_CW1_NEED4 );
+
+ /*
+ ** ICW2: primary offset of 0x20 in the IDT, secondary offset of 0x28
+ */
+ outb( PIC1_DATA, PIC1_CW2_VECBASE );
+ outb( PIC2_DATA, PIC2_CW2_VECBASE );
+
+ /*
+ ** ICW3: secondary attached to line 2 of primary, bit mask is 00000100
+ ** secondary id is 2
+ */
+ outb( PIC1_DATA, PIC1_CW3_SEC_IRQ2 );
+ outb( PIC2_DATA, PIC2_CW3_SEC_ID );
+
+ /*
+ ** ICW4: want 8086 mode, not 8080/8085 mode
+ */
+ outb( PIC1_DATA, PIC_CW4_PM86 );
+ outb( PIC2_DATA, PIC_CW4_PM86 );
+
+ /*
+ ** OCW1: allow interrupts on all lines
+ */
+ outb( PIC1_DATA, PIC_MASK_NONE );
+ outb( PIC2_DATA, PIC_MASK_NONE );
+}
+
+/**
+** set_idt_entry
+**
+** Construct an entry in the IDT
+**
+** @param entry the vector number of the interrupt
+** @param handler ISR address to be put into the IDT entry
+**
+** Note: generally, the handler invoked from the IDT will be a "stub"
+** that calls the second-level C handler via the isr_table array.
+*/
+static void set_idt_entry( int entry, void ( *handler )( void ) ) {
+ IDT_Gate *g = (IDT_Gate *)IDT_ADDR + entry;
+
+ g->offset_15_0 = (int)handler & 0xffff;
+ g->segment_selector = 0x0010;
+ g->flags = IDT_PRESENT | IDT_DPL_0 | IDT_INT32_GATE;
+ g->offset_31_16 = (int)handler >> 16 & 0xffff;
+}
+
+/**
+** Name: init_idt
+**
+** Initialize the Interrupt Descriptor Table (IDT). This makes each of
+** the entries in the IDT point to the isr stub for that entry, and
+** installs a default handler in the handler table. Temporary handlers
+** are then installed for those interrupts we may get before a real
+** handler is set up.
+*/
+static void init_idt( void ) {
+ int i;
+ extern void ( *isr_stub_table[ 256 ] )( void );
+
+ /*
+ ** Make each IDT entry point to the stub for that vector. Also
+ ** make each entry in the ISR table point to the default handler.
+ */
+ for ( i=0; i < 256; i++ ) {
+ set_idt_entry( i, isr_stub_table[ i ] );
+ install_isr( i, unexpected_handler );
+ }
+
+ /*
+ ** Install the handlers for interrupts that have (or will have) a
+ ** specific handler. Comments indicate which module init function
+ ** will eventually install the "real" handler.
+ */
+
+ install_isr( VEC_KBD, default_handler ); // cio_init()
+ install_isr( VEC_COM1, default_handler ); // sio_init()
+ install_isr( VEC_TIMER, default_handler ); // clk_init()
+ install_isr( VEC_SYSCALL, default_handler ); // sys_init()
+ install_isr( VEC_PAGE_FAULT, default_handler ); // vm_init()
+
+ install_isr( VEC_MYSTERY, mystery_handler );
+}
+
+/*
+** END OF LOCAL ROUTINES.
+**
+** Full documentation for globally-visible routines is in the corresponding
+** header file.
+*/
+
+/*
+** panic
+**
+** Called when we find an unrecoverable error.
+*/
+void panic( char *reason ) {
+ __asm__( "cli" );
+ cio_printf( "\nPANIC: %s\nHalting...", reason );
+ for(;;) {
+ ;
+ }
+}
+
+/*
+** init_interrupts
+**
+** (Re)initilizes the interrupt system.
+*/
+void init_interrupts( void ) {
+ init_idt();
+ init_pic();
+}
+
+/*
+** install_isr
+**
+** Installs a second-level handler for a specific interrupt.
+*/
+void (*install_isr( int vector,
+ void (*handler)(int,int) ) ) ( int, int ) {
+
+ void ( *old_handler )( int vector, int code );
+
+ old_handler = isr_table[ vector ];
+ isr_table[ vector ] = handler;
+ return old_handler;
+}
+
+/*
+** Name: delay
+**
+** Notes: The parameter to the delay() function is ambiguous; it
+** purports to indicate a delay length, but that isn't really tied
+** to any real-world time measurement.
+**
+** On the original systems we used (dual 500MHz Intel P3 CPUs), each
+** "unit" was approximately one tenth of a second, so delay(10) would
+** delay for about one second.
+**
+** On the current machines (Intel Core i5-7500), delay(100) is about
+** 2.5 seconds, so each "unit" is roughly 0.025 seconds.
+**
+** Ultimately, just remember that DELAY VALUES ARE APPROXIMATE AT BEST.
+*/
+void delay( int length ) {
+
+ while( --length >= 0 ) {
+ for( int i = 0; i < 10000000; ++i )
+ ;
+ }
+}
diff --git a/kernel/syscalls.c b/kernel/syscalls.c
new file mode 100644
index 0000000..7176cda
--- /dev/null
+++ b/kernel/syscalls.c
@@ -0,0 +1,829 @@
+/**
+** @file syscalls.c
+**
+** @author CSCI-452 class of 20245
+**
+** @brief System call implementations
+*/
+
+#define KERNEL_SRC
+
+#include <common.h>
+
+#include <cio.h>
+#include <clock.h>
+#include <procs.h>
+#include <sio.h>
+#include <syscalls.h>
+#include <user.h>
+#include <vm.h>
+#include <x86/pic.h>
+
+/*
+** PRIVATE DEFINITIONS
+*/
+
+/*
+** Macros to simplify tracing a bit
+**
+** TRACING_SYSCALLS and TRACING_SYSRETS are defined in debug.h,
+** controlled by the TRACE ** macro. If not tracing these, SYSCALL_ENTER
+** is a no-op, and SYSCALL_EXIT just does a return.
+*/
+
+#if TRACING_SYSCALLS
+
+#define SYSCALL_ENTER(x) do { \
+ cio_printf( "--> %s, pid %08x", __func__, (uint32_t) (x) ); \
+ } while(0)
+
+#else
+
+#define SYSCALL_ENTER(x) /* */
+
+#endif /* TRACING_SYSCALLS */
+
+#if TRACING_SYSRETS
+
+#define SYSCALL_EXIT(x) do { \
+ cio_printf( "<-- %s %08x\n", __func__, (uint32_t) (x) ); \
+ return; \
+ } while(0)
+
+#else
+
+#define SYSCALL_EXIT(x) return
+
+#endif /* TRACING_SYSRETS */
+
+/*
+** PRIVATE DATA TYPES
+*/
+
+/*
+** PUBLIC GLOBAL VARIABLES
+*/
+
+/*
+** IMPLEMENTATION FUNCTIONS
+*/
+
+// a macro to simplify syscall entry point specification
+// we don't declare these static because we may want to call
+// some of them from other parts of the kernel
+#define SYSIMPL(x) void sys_##x( pcb_t * pcb )
+
+/*
+** Second-level syscall handlers
+**
+** All have this prototype:
+**
+** static void sys_NAME( pcb_t *pcb );
+**
+** where the parameter 'pcb' is a pointer to the PCB of the process
+** making the system call.
+**
+** Values being returned to the user are placed into the EAX
+** field in the context save area for that process.
+*/
+
+/**
+** sys_exit - terminate the calling process
+**
+** Implements:
+** void exit( int32_t status );
+**
+** Does not return
+*/
+SYSIMPL(exit) {
+
+ // sanity check
+ assert( pcb != NULL );
+
+ SYSCALL_ENTER( pcb->pid );
+
+ // retrieve the exit status of this process
+ pcb->exit_status = (int32_t) ARG(pcb,1);
+
+ // now, we need to do the following:
+ // reparent any children of this process and wake up init if need be
+ // find this process' parent and wake it up if it's waiting
+
+ pcb_zombify( pcb );
+
+ // pick a new winner
+ dispatch();
+
+ SYSCALL_EXIT( 0 );
+}
+
+/**
+** sys_waitpid - wait for a child process to terminate
+**
+** Implements:
+** int waitpid( uint_t pid, int32_t *status );
+**
+** Blocks the calling process until the specified child (or any child)
+** of the caller terminates. Intrinsic return is the PID of the child that
+** terminated, or an error code; on success, returns the child's termination
+** status via 'status' if that pointer is non-NULL.
+*/
+SYSIMPL(waitpid) {
+
+ // sanity check
+ assert( pcb != NULL );
+
+ SYSCALL_ENTER( pcb->pid );
+
+ /*
+ ** We need to do two things here: (1) find out whether or
+ ** not this process has any children in the system, and (2)
+ ** find out whether the desired child (or any child, if the
+ ** target PID is 0) has terminated.
+ **
+ ** To do this, we loop until we find a the requested PID or
+ ** a Zombie child process, or have gone through all of the
+ ** slots in the process table.
+ **
+ ** If the target PID is 0, we don't care which child process
+ ** we reap here; there could be several, but we only need to
+ ** find one.
+ */
+
+ // verify that we aren't looking for ourselves!
+ uint_t target = ARG(pcb,1);
+
+ if( target == pcb->pid ) {
+ RET(pcb) = E_BAD_PARAM;
+ SYSCALL_EXIT( E_BAD_PARAM );
+ }
+
+ // Good. Now, figure out what we're looking for.
+
+ pcb_t *child = NULL;
+
+ if( target != 0 ) {
+
+ // we're looking for a specific child
+ child = pcb_find_pid( target );
+
+ if( child != NULL ) {
+
+ // found the process; is it one of our children:
+ if( child->parent != pcb ) {
+ // NO, so we can't wait for it
+ RET(pcb) = E_BAD_PARAM;
+ SYSCALL_EXIT( E_BAD_PARAM );
+ }
+
+ // yes! is this one ready to be collected?
+ if( child->state != STATE_ZOMBIE ) {
+ // no, so we'll have to block for now
+ child = NULL;
+ }
+
+ } else {
+
+ // no such child
+ RET(pcb) = E_BAD_PARAM;
+ SYSCALL_EXIT( E_BAD_PARAM );
+
+ }
+
+ } else {
+
+ // looking for any child
+
+ // we need to find a process that is our child
+ // and has already exited
+
+ child = NULL;
+ bool_t found = false;
+
+ // unfortunately, we can't stop at the first child,
+ // so we need to do the iteration ourselves
+ register pcb_t *curr = ptable;
+
+ for( int i = 0; i < N_PROCS; ++i, ++curr ) {
+
+ if( curr->parent == pcb ) {
+
+ // found one!
+ found = true;
+
+ // has it already exited?
+ if( curr->state == STATE_ZOMBIE ) {
+ // yes, so we're done here
+ child = curr;
+ break;
+ }
+ }
+ }
+
+ if( !found ) {
+ // got through the loop without finding a child!
+ RET(pcb) = E_NO_CHILDREN;
+ SYSCALL_EXIT( E_NO_CHILDREN );
+ }
+
+ }
+
+ /*
+ ** At this point, one of these situations is true:
+ **
+ ** * we are looking for a specific child and found it
+ ** * we are looking for any child and found one
+ **
+ ** Either way, 'child' will be non-NULL if the selected
+ ** process has already become a Zombie. If that's the
+ ** case, we collect its status and clean it up; otherwise,
+ ** we block this process.
+ */
+
+ // did we find one to collect?
+ if( child == NULL ) {
+
+ // no - mark the parent as "Waiting"
+ pcb->state = STATE_WAITING;
+ assert( pcb_queue_insert(waiting,pcb) == SUCCESS );
+
+ // select a new current process
+ dispatch();
+ SYSCALL_EXIT( (uint32_t) current );
+ }
+
+ // found a Zombie; collect its information and clean it up
+ RET(pcb) = child->pid;
+
+ // get "status" pointer from parent
+ int32_t *stat = (int32_t *) ARG(pcb,2);
+
+ // if stat is NULL, the parent doesn't want the status
+ if( stat != NULL ) {
+ // ********************************************************
+ // ** Potential VM issue here! This code assigns the exit
+ // ** status into a variable in the parent's address space.
+ // ** This works in the baseline because we aren't using
+ // ** any type of memory protection. If address space
+ // ** separation is implemented, this code will very likely
+ // ** STOP WORKING, and will need to be fixed.
+ // ********************************************************
+ *stat = child->exit_status;
+ }
+
+ // clean up the child
+ pcb_cleanup( child );
+
+ SYSCALL_EXIT( RET(pcb) );
+}
+
+/**
+** sys_fork - create a new process
+**
+** Implements:
+** int fork( void );
+**
+** Creates a new process that is a duplicate of the calling process.
+** Returns the child's PID to the parent, and 0 to the child, on success;
+** else, returns an error code to the parent.
+*/
+SYSIMPL(fork) {
+
+ // sanity check
+ assert( pcb != NULL );
+
+ SYSCALL_ENTER( pcb->pid );
+
+ // Make sure there's room for another process!
+ pcb_t *new;
+ if( pcb_alloc(&new) != SUCCESS || new == NULL ) {
+ RET(pcb) = E_NO_PROCS;
+ SYSCALL_EXIT( RET(pcb) );
+ }
+
+ // duplicate the memory image of the parent
+ int status = user_duplicate( new, pcb );
+ if( status != SUCCESS ) {
+ pcb_free( new );
+ RET(pcb) = status;
+ SYSCALL_EXIT( status );
+ }
+
+ // Set the child's identity.
+ new->pid = next_pid++;
+ new->parent = pcb;
+ new->state = STATE_NEW;
+
+ // replicate other things inherited from the parent
+ new->priority = pcb->priority;
+
+ // Set the return values for the two processes.
+ RET(pcb) = new->pid;
+ RET(new) = 0;
+
+ // Schedule the child, and let the parent continue.
+ schedule( new );
+
+ SYSCALL_EXIT( new->pid );
+}
+
+/**
+** sys_exec - replace the memory image of a process
+**
+** Implements:
+** void exec( uint_t what, char **args );
+**
+** Replaces the memory image of the calling process with that of the
+** indicated program.
+**
+** Returns only on failure.
+*/
+SYSIMPL(exec)
+{
+ // sanity check
+ assert( pcb != NULL );
+
+ uint_t what = ARG(pcb,1);
+ const char **args = (const char **) ARG(pcb,2);
+
+ SYSCALL_ENTER( pcb->pid );
+
+ // locate the requested program
+ prog_t *prog = user_locate( what );
+ if( prog == NULL ) {
+ RET(pcb) = E_NOT_FOUND;
+ SYSCALL_EXIT( E_NOT_FOUND );
+ }
+
+ // we have located the program, but before we can load it,
+ // we need to clean up the existing VM hierarchy
+ vm_free( pcb->pdir );
+ pcb->pdir = NULL;
+
+ // "load" it and set up the VM tables for this process
+ int status = user_load( prog, pcb, args );
+ if( status != SUCCESS ) {
+ RET(pcb) = status;
+ SYSCALL_EXIT( status );
+ }
+
+ /*
+ ** Decision:
+ ** (A) schedule this process and dispatch another,
+ ** (B) let this one continue in its current time slice
+ ** (C) reset this one's time slice and let it continue
+ **
+ ** We choose option A.
+ **
+ ** If scheduling the process fails, the exec() has failed. However,
+ ** all trace of the old process is gone by now, so we can't return
+ ** an error status to it.
+ */
+
+ schedule( pcb );
+
+ dispatch();
+}
+
+/**
+** sys_read - read into a buffer from an input channel
+**
+** Implements:
+** int read( uint_t chan, void *buffer, uint_t length );
+**
+** Reads up to 'length' bytes from 'chan' into 'buffer'. Returns the
+** count of bytes actually transferred.
+*/
+SYSIMPL(read) {
+
+ // sanity check
+ assert( pcb != NULL );
+
+ SYSCALL_ENTER( pcb->pid );
+
+ // grab the arguments
+ uint_t chan = ARG(pcb,1);
+ char *buf = (char *) ARG(pcb,2);
+ uint_t len = ARG(pcb,3);
+
+ // if the buffer is of length 0, we're done!
+ if( len == 0 ) {
+ RET(pcb) = 0;
+ SYSCALL_EXIT( 0 );
+ }
+
+ // try to get the next character(s)
+ int n = 0;
+
+ if( chan == CHAN_CIO ) {
+
+ // console input is non-blocking
+ if( cio_input_queue() < 1 ) {
+ RET(pcb) = 0;
+ SYSCALL_EXIT( 0 );
+ }
+ // at least one character
+ n = cio_gets( buf, len );
+ RET(pcb) = n;
+ SYSCALL_EXIT( n );
+
+ } else if( chan == CHAN_SIO ) {
+
+ // SIO input is blocking, so if there are no characters
+ // available, we'll block this process
+ n = sio_read( buf, len );
+ RET(pcb) = n;
+ SYSCALL_EXIT( n );
+
+ }
+
+ // bad channel code
+ RET(pcb) = E_BAD_PARAM;
+ SYSCALL_EXIT( E_BAD_PARAM );
+}
+
+/**
+** sys_write - write from a buffer to an output channel
+**
+** Implements:
+** int write( uint_t chan, const void *buffer, uint_t length );
+**
+** Writes 'length' bytes from 'buffer' to 'chan'. Returns the
+** count of bytes actually transferred.
+*/
+SYSIMPL(write) {
+
+ // sanity check
+ assert( pcb != NULL );
+
+ SYSCALL_ENTER( pcb->pid );
+
+ // grab the parameters
+ uint_t chan = ARG(pcb,1);
+ char *buf = (char *) ARG(pcb,2);
+ uint_t length = ARG(pcb,3);
+
+ // this is almost insanely simple, but it does separate the
+ // low-level device access fromm the higher-level syscall implementation
+
+ // assume we write the indicated amount
+ int rval = length;
+
+ // simplest case
+ if( length >= 0 ) {
+
+ if( chan == CHAN_CIO ) {
+
+ cio_write( buf, length );
+
+ } else if( chan == CHAN_SIO ) {
+
+ sio_write( buf, length );
+
+ } else {
+
+ rval = E_BAD_CHAN;
+
+ }
+
+ }
+
+ RET(pcb) = rval;
+
+ SYSCALL_EXIT( rval );
+}
+
+/**
+** sys_getpid - returns the PID of the calling process
+**
+** Implements:
+** uint_t getpid( void );
+*/
+SYSIMPL(getpid) {
+
+ // sanity check!
+ assert( pcb != NULL );
+
+ SYSCALL_ENTER( pcb->pid );
+
+ // return the time
+ RET(pcb) = pcb->pid;
+}
+
+/**
+** sys_getppid - returns the PID of the parent of the calling process
+**
+** Implements:
+** uint_t getppid( void );
+*/
+SYSIMPL(getppid) {
+
+ // sanity check!
+ assert( pcb != NULL );
+ assert( pcb->parent != NULL );
+
+ SYSCALL_ENTER( pcb->pid );
+
+ // return the time
+ RET(pcb) = pcb->parent->pid;
+}
+
+/**
+** sys_gettime - returns the current system time
+**
+** Implements:
+** uint32_t gettime( void );
+*/
+SYSIMPL(gettime) {
+
+ // sanity check!
+ assert( pcb != NULL );
+
+ SYSCALL_ENTER( pcb->pid );
+
+ // return the time
+ RET(pcb) = system_time;
+}
+
+/**
+** sys_getprio - the scheduling priority of the calling process
+**
+** Implements:
+** int getprio( void );
+*/
+SYSIMPL(getprio) {
+
+ // sanity check!
+ assert( pcb != NULL );
+
+ SYSCALL_ENTER( pcb->pid );
+
+ // return the time
+ RET(pcb) = pcb->priority;
+}
+
+/**
+** sys_setprio - sets the scheduling priority of the calling process
+**
+** Implements:
+** int setprio( int new );
+*/
+SYSIMPL(setprio) {
+
+ // sanity check!
+ assert( pcb != NULL );
+
+ SYSCALL_ENTER( pcb->pid );
+
+ // remember the old priority
+ int old = pcb->priority;
+
+ // set the priority
+ pcb->priority = ARG(pcb,1);
+
+ // return the old value
+ RET(pcb) = old;
+}
+
+/**
+** sys_kill - terminate a process with extreme prejudice
+**
+** Implements:
+** int32_t kill( uint_t pid );
+**
+** Marks the specified process (or the calling process, if PID is 0)
+** as "killed". Returns 0 on success, else an error code.
+*/
+SYSIMPL(kill) {
+
+ // sanity check
+ assert( pcb != NULL );
+
+ SYSCALL_ENTER( pcb->pid );
+
+ // who is the victim?
+ uint_t pid = ARG(pcb,1);
+
+ // if it's this process, convert this into a call to exit()
+ if( pid == pcb->pid ) {
+ pcb->exit_status = EXIT_KILLED;
+ pcb_zombify( pcb );
+ dispatch();
+ SYSCALL_EXIT( EXIT_KILLED );
+ }
+
+ // must be a valid "ordinary user" PID
+ // QUESTION: what if it's the idle process?
+ if( pid < FIRST_USER_PID ) {
+ RET(pcb) = E_FAILURE;
+ SYSCALL_EXIT( E_FAILURE );
+ }
+
+ // OK, this is an acceptable victim; see if it exists
+ pcb_t *victim = pcb_find_pid( pid );
+ if( victim == NULL ) {
+ // nope!
+ RET(pcb) = E_NOT_FOUND;
+ SYSCALL_EXIT( E_NOT_FOUND );
+ }
+
+ // must have a state that is possible
+ assert( victim->state >= FIRST_VIABLE && victim->state < N_STATES );
+
+ // how we perform the kill depends on the victim's state
+ int32_t status = SUCCESS;
+
+ switch( victim->state ) {
+
+ case STATE_KILLED: // FALL THROUGH
+ case STATE_ZOMBIE:
+ // you can't kill it if it's already dead
+ RET(pcb) = SUCCESS;
+ break;
+
+ case STATE_READY: // FALL THROUGH
+ case STATE_SLEEPING: // FALL THROUGH
+ case STATE_BLOCKED: // FALL THROUGH
+ // here, the process is on a queue somewhere; mark
+ // it as "killed", and let the scheduler deal with it
+ victim->state = STATE_KILLED;
+ RET(pcb) = SUCCESS;
+ break;
+
+ case STATE_RUNNING:
+ // we have met the enemy, and it is us!
+ pcb->exit_status = EXIT_KILLED;
+ pcb_zombify( pcb );
+ status = EXIT_KILLED;
+ // we need a new current process
+ dispatch();
+ break;
+
+ case STATE_WAITING:
+ // similar to the 'running' state, but we don't need
+ // to dispatch a new process
+ victim->exit_status = EXIT_KILLED;
+ status = pcb_queue_remove_this( waiting, victim );
+ pcb_zombify( victim );
+ RET(pcb) = status;
+ break;
+
+ default:
+ // this is a really bad potential problem - we have an
+ // unexpected or bogus process state, but we didn't
+ // catch that earlier.
+ sprint( b256, "*** kill(): victim %d, odd state %d\n",
+ victim->pid, victim->state );
+ PANIC( 0, b256 );
+ }
+
+ SYSCALL_EXIT( status );
+}
+
+
+/**
+** sys_sleep - put the calling process to sleep for some length of time
+**
+** Implements:
+** uint_t sleep( uint_t ms );
+**
+** Puts the calling process to sleep for 'ms' milliseconds (or just yields
+** the CPU if 'ms' is 0). ** Returns the time the process spent sleeping.
+*/
+SYSIMPL(sleep) {
+
+ // sanity check
+ assert( pcb != NULL );
+
+ SYSCALL_ENTER( pcb->pid );
+
+ // get the desired duration
+ uint_t length = ARG( pcb, 1 );
+
+ if( length == 0 ) {
+
+ // just yield the CPU
+ // sleep duration is 0
+ RET(pcb) = 0;
+
+ // back on the ready queue
+ schedule( pcb );
+
+ } else {
+
+ // sleep for a while
+ pcb->wakeup = system_time + length;
+
+ if( pcb_queue_insert(sleeping,pcb) != SUCCESS ) {
+ // something strange is happening
+ WARNING( "sleep pcb insert failed" );
+ // if this is the current process, report an error
+ if( current == pcb ) {
+ RET(pcb) = -1;
+ }
+ // return without dispatching a new process
+ return;
+ }
+ }
+
+ // only dispatch if the current process called us
+ if( pcb == current ) {
+ current = NULL;
+ dispatch();
+ }
+}
+
+/*
+** PRIVATE FUNCTIONS GLOBAL VARIABLES
+*/
+
+/*
+** The system call jump table
+**
+** Initialized using designated initializers to ensure the entries
+** are correct even if the syscall code values should happen to change.
+** This also makes it easy to add new system call entries, as their
+** position in the initialization list is irrelevant.
+*/
+
+static void (* const syscalls[N_SYSCALLS])( pcb_t * ) = {
+ [ SYS_exit ] = sys_exit,
+ [ SYS_waitpid ] = sys_waitpid,
+ [ SYS_fork ] = sys_fork,
+ [ SYS_exec ] = sys_exec,
+ [ SYS_read ] = sys_read,
+ [ SYS_write ] = sys_write,
+ [ SYS_getpid ] = sys_getpid,
+ [ SYS_getppid ] = sys_getppid,
+ [ SYS_gettime ] = sys_gettime,
+ [ SYS_getprio ] = sys_getprio,
+ [ SYS_setprio ] = sys_setprio,
+ [ SYS_kill ] = sys_kill,
+ [ SYS_sleep ] = sys_sleep
+};
+
+/**
+** Name: sys_isr
+**
+** System call ISR
+**
+** @param vector Vector number for this interrupt
+** @param code Error code (0 for this interrupt)
+*/
+static void sys_isr( int vector, int code ) {
+
+ // keep the compiler happy
+ (void) vector;
+ (void) code;
+
+ // sanity check!
+ assert( current != NULL );
+ assert( current->context != NULL );
+
+ // retrieve the syscall code
+ int num = REG( current, eax );
+
+#if TRACING_SYSCALLS
+ cio_printf( "** --> SYS pid %u code %u\n", current->pid, num );
+#endif
+
+ // validate it
+ if( num < 0 || num >= N_SYSCALLS ) {
+ // bad syscall number
+ // could kill it, but we'll just force it to exit
+ num = SYS_exit;
+ ARG(current,1) = EXIT_BAD_SYSCALL;
+ }
+
+ // call the handler
+ syscalls[num]( current );
+
+#if TRACING_SYSCALLS
+ cio_printf( "** <-- SYS pid %u ret %u\n", current->pid, RET(current) );
+#endif
+
+ // tell the PIC we're done
+ outb( PIC1_CMD, PIC_EOI );
+}
+
+/*
+** PUBLIC FUNCTIONS
+*/
+
+/**
+** Name: sys_init
+**
+** Syscall module initialization routine
+**
+** Dependencies:
+** Must be called after cio_init()
+*/
+void sys_init( void ) {
+
+#if TRACING_INIT
+ cio_puts( " Sys" );
+#endif
+
+ // install the second-stage ISR
+ install_isr( VEC_SYSCALL, sys_isr );
+}
diff --git a/kernel/user.c b/kernel/user.c
new file mode 100644
index 0000000..2d32157
--- /dev/null
+++ b/kernel/user.c
@@ -0,0 +1,774 @@
+/**
+** @file user.c
+**
+** @author CSCI-452 class of 20245
+**
+** @brief User-level code manipulation routines
+*/
+
+#define KERNEL_SRC
+
+#include <common.h>
+
+#include <bootstrap.h>
+#include <elf.h>
+#include <user.h>
+#include <vm.h>
+
+/*
+** PRIVATE DEFINITIONS
+*/
+
+/*
+** PRIVATE DATA TYPES
+*/
+
+/*
+** PRIVATE GLOBAL VARIABLES
+*/
+
+/*
+** PUBLIC GLOBAL VARIABLES
+*/
+
+/*
+** Location of the "user blob" in memory.
+**
+** These variables are filled in by the code in startup.S using values
+** passed to it from the bootstrap.
+**
+** These are visible so that the startup code can find them.
+*/
+uint16_t user_offset; // byte offset from the segment base
+uint16_t user_segment; // segment base address
+uint16_t user_sectors; // number of 512-byte sectors it occupies
+
+header_t *user_header; // filled in by the user_init routine
+prog_t *prog_table; // filled in by the user_init routine
+
+/*
+** PRIVATE FUNCTIONS
+*/
+
+#if TRACING_ELF
+
+/*
+** This is debugging support code; if not debugging the ELF
+** handling code, it won't be compiled into the kernel.
+*/
+
+// buffer used by some of these functions
+static char ebuf[16];
+
+/*
+** File header functions
+*/
+
+// interpret the file class
+static const char *fh_eclass( e32_si class ) {
+ switch( class ) {
+ case ELF_CLASS_NONE: return( "None" ); break;
+ case ELF_CLASS_32: return( "EC32" ); break;
+ case ELF_CLASS_64: return( "EC64" ); break;
+ }
+ return( "????" );
+}
+
+// interpret the data encoding
+static const char *fh_edata( e32_si data ) {
+ switch( data ) {
+ case ELF_DATA_NONE: return( "Invd" ); break;
+ case ELF_DATA_2LSB: return( "2CLE" ); break;
+ case ELF_DATA_2MSB: return( "2CBE" ); break;
+ }
+ return( "????" );
+}
+
+// interpret the file type
+static const char *fh_htype( e32_h type ) {
+ switch( type ) {
+ case ET_NONE: return( "none" ); break;
+ case ET_REL: return( "rel" ); break;
+ case ET_EXEC: return( "exec" ); break;
+ case ET_DYN: return( "dyn" ); break;
+ case ET_CORE: return( "core" ); break;
+ default:
+ if( type >= ET_LO_OS && type <= ET_HI_OS )
+ return( "OSsp" );
+ else if( type >= ET_LO_CP && type <= ET_HI_CP )
+ return( "CPsp" );
+ }
+ sprint( ebuf, "0x%04x", type );
+ return( (const char *) ebuf );
+}
+
+// interpret the machine type
+static const char *fh_mtype( e32_h machine ) {
+ switch( machine ) {
+ case EM_NONE: return( "None" ); break;
+ case EM_386: return( "386" ); break;
+ case EM_ARM: return( "ARM" ); break;
+ case EM_X86_64: return( "AMD64" ); break;
+ case EM_AARCH64: return( "AARCH64" ); break;
+ case EM_RISCV: return( "RISC-V" ); break;
+ }
+ return( "Other" );
+}
+
+// dump the program header
+static void dump_fhdr( elfhdr_t *hdr ) {
+ cio_puts( "File header: magic " );
+ for( int i = EI_MAG0; i <= EI_MAG3; ++i )
+ put_char_or_code( hdr->e_ident.bytes[i] );
+ cio_printf( " class %s", fh_eclass(hdr->e_ident.f.class) );
+ cio_printf( " enc %s", fh_edata(hdr->e_ident.f.data) );
+ cio_printf( " ver %u\n", hdr->e_ident.f.version );
+ cio_printf( " type %s", fh_htype(hdr->e_type) );
+ cio_printf( " mach %s", fh_mtype(hdr->e_machine) );
+ cio_printf( " vers %d", hdr->e_version );
+ cio_printf( " entr %08x\n", hdr->e_entry );
+
+ cio_printf( " phoff %08x", hdr->e_phoff );
+ cio_printf( " shoff %08x", hdr->e_shoff );
+ cio_printf( " flags %08x", (uint32_t) hdr->e_flags );
+ cio_printf( " ehsize %u\n", hdr->e_ehsize );
+ cio_printf( " phentsize %u", hdr->e_phentsize );
+ cio_printf( " phnum %u", hdr->e_phnum );
+ cio_printf( " shentsize %u", hdr->e_shentsize );
+ cio_printf( " shnum %u", hdr->e_shnum );
+ cio_printf( " shstrndx %u\n", hdr->e_shstrndx );
+}
+
+/*
+** Program header functions
+*/
+
+// categorize the header type
+static const char *ph_type( e32_w type ) {
+ switch( type ) {
+ case PT_NULL: return( "Unused" ); break;
+ case PT_LOAD: return( "Load" ); break;
+ case PT_DYNAMIC: return( "DLI" ); break;
+ case PT_INTERP: return( "Interp" ); break;
+ case PT_NOTE: return( "Aux" ); break;
+ case PT_SHLIB: return( "RSVD" ); break;
+ case PT_PHDR: return( "PTentry" ); break;
+ case PT_TLS: return( "TLS" ); break;
+ default:
+ if( type >= PT_LO_OS && type <= PT_HI_OS )
+ return( "OSsp" );
+ else if( type >= PT_LO_CP && type <= PT_HI_CP )
+ return( "CPsp" );
+ }
+ sprint( ebuf, "0x%08x", type );
+ return( (const char *) ebuf );
+}
+
+// report the individual flags
+static void ph_flags( e32_w flags ) {
+ if( (flags & PF_R) != 0 ) cio_putchar( 'R' );
+ if( (flags & PF_W) != 0 ) cio_putchar( 'W' );
+ if( (flags & PF_E) != 0 ) cio_putchar( 'X' );
+}
+
+// dump a program header
+static void dump_phdr( elfproghdr_t *hdr, int n ) {
+ cio_printf( "Prog header %d, type %s\n", n, ph_type(hdr->p_type) );
+ cio_printf( " offset %08x", hdr->p_offset );
+ cio_printf( " va %08x", hdr->p_va );
+ cio_printf( " pa %08x\n", hdr->p_pa );
+ cio_printf( " filesz %08x", hdr->p_filesz );
+ cio_printf( " memsz %08x", hdr->p_memsz );
+ cio_puts( " flags " );
+ ph_flags( hdr->p_flags );
+ cio_printf( " align %08x", hdr->p_align );
+ cio_putchar( '\n' );
+}
+
+/*
+** Section header functions
+*/
+
+// interpret the header type
+static const char *sh_type( e32_w type ) {
+ switch( type ) {
+ case SHT_NULL: return( "Unused" ); break;
+ case SHT_PROGBITS: return( "Progbits" ); break;
+ case SHT_SYMTAB: return( "Symtab" ); break;
+ case SHT_STRTAB: return( "Strtab" ); break;
+ case SHT_RELA: return( "Rela" ); break;
+ case SHT_HASH: return( "Hash" ); break;
+ case SHT_DYNAMIC: return( "Dynamic" ); break;
+ case SHT_NOTE: return( "Note" ); break;
+ case SHT_NOBITS: return( "Nobits" ); break;
+ case SHT_REL: return( "Rel" ); break;
+ case SHT_SHLIB: return( "Shlib" ); break;
+ case SHT_DYNSYM: return( "Dynsym" ); break;
+ default:
+ if( type >= SHT_LO_CP && type <= SHT_HI_CP )
+ return( "CCsp" );
+ else if( type >= SHT_LO_US && type <= SHT_HI_US )
+ return( "User" );
+ }
+ sprint( ebuf, "0x%08x", type );
+ return( (const char *) ebuf );
+}
+
+// report the various flags
+static void sh_flags( unsigned int flags ) {
+ if( (flags & SHF_WRITE) != 0 ) cio_putchar( 'W' );
+ if( (flags & SHF_ALLOC) != 0 ) cio_putchar( 'A' );
+ if( (flags & SHF_EXECINSTR) != 0 ) cio_putchar( 'X' );
+ if( (flags & SHF_MERGE) != 0 ) cio_putchar( 'M' );
+ if( (flags & SHF_STRINGS) != 0 ) cio_putchar( 'S' );
+ if( (flags & SHF_INFO_LINK) != 0 ) cio_putchar( 'L' );
+ if( (flags & SHF_LINK_ORDER) != 0 ) cio_putchar( 'o' );
+ if( (flags & SHF_OS_NONCON) != 0 ) cio_putchar( 'n' );
+ if( (flags & SHF_GROUP) != 0 ) cio_putchar( 'g' );
+ if( (flags & SHF_TLS) != 0 ) cio_putchar( 't' );
+}
+
+// dump a section header
+__attribute__((__unused__))
+static void dump_shdr( elfsecthdr_t *hdr, int n ) {
+ cio_printf( "Sect header %d, type %d (%s), name %s\n",
+ n, hdr->sh_type, sh_type(hdr->sh_type) );
+ cio_printf( " flags %08x ", (uint32_t) hdr->sh_flags );
+ sh_flags( hdr->sh_flags );
+ cio_printf( " addr %08x", hdr->sh_addr );
+ cio_printf( " offset %08x", hdr->sh_offset );
+ cio_printf( " size %08x\n", hdr->sh_size );
+ cio_printf( " link %08x", hdr->sh_link );
+ cio_printf( " info %08x", hdr->sh_info );
+ cio_printf( " align %08x", hdr->sh_addralign );
+ cio_printf( " entsz %08x\n", hdr->sh_entsize );
+}
+#endif
+
+/**
+** read_phdrs(addr,phoff,phentsize,phnum)
+**
+** Parses the ELF program headers and each segment described into memory.
+**
+** @param hdr Pointer to the program header
+** @param pcb Pointer to the PCB (and its PDE)
+**
+** @return status of the attempt:
+** SUCCESS everything loaded correctly
+** E_LOAD_LIMIT more than N_LOADABLE PT_LOAD sections
+** other status returned from vm_add()
+*/
+static int read_phdrs( elfhdr_t *hdr, pcb_t *pcb ) {
+
+ // sanity check
+ assert1( hdr != NULL );
+ assert2( pcb != NULL );
+
+#if TRACING_USER
+ cio_printf( "read_phdrs(%08x,%08x)\n", (uint32_t) hdr, (uint32_t) pcb );
+#endif
+
+ // iterate through the program headers
+ uint_t nhdrs = hdr->e_phnum;
+
+ // pointer to the first header table entry
+ elfproghdr_t *curr = (elfproghdr_t *) ((uint32_t) hdr + hdr->e_phoff);
+
+ // process them all
+ int loaded = 0;
+ for( uint_t i = 0; i < nhdrs; ++i, ++curr ) {
+
+#if TRACING_ELF
+ dump_phdr( curr, i );
+#endif
+ if( curr->p_type != PT_LOAD ) {
+ // not loadable --> we'll skip it
+ continue;
+ }
+
+ if( loaded >= N_LOADABLE ) {
+#if TRACING_USER
+ cio_puts( " LIMIT\n" );
+#endif
+ return E_LOAD_LIMIT;
+ }
+
+ // set a pointer to the bytes within the object file
+ char *data = (char *) (((uint32_t)hdr) + curr->p_offset);
+#if TRACING_USER
+ cio_printf( " data @ %08x", (uint32_t) data );
+#endif
+
+ // copy the pages into memory
+ int stat = vm_add( pcb->pdir, curr->p_flags & PF_W, false,
+ (char *) curr->p_va, curr->p_memsz, data, curr->p_filesz );
+ if( stat != SUCCESS ) {
+ // TODO what else should we do here? check for memory leak?
+ return stat;
+ }
+
+ // set the section table entry in the PCB
+ pcb->sects[loaded].length = curr->p_memsz;
+ pcb->sects[loaded].addr = curr->p_va;
+#if TRACING_USER
+ cio_printf( " loaded %u @ %08x\n",
+ pcb->sects[loaded].length, pcb->sects[loaded].addr );
+#endif
+ ++loaded;
+ }
+
+ return SUCCESS;
+}
+
+/**
+** Name: stack_setup
+**
+** Set up the stack for a new process
+**
+** @param pcb Pointer to the PCB for the process
+** @param entry Entry point for the new process
+** @param args Argument vector to be put in place
+**
+** @return A pointer to the context_t on the stack, or NULL
+*/
+static context_t *stack_setup( pcb_t *pcb, uint32_t entry, const char **args ) {
+
+ /*
+ ** First, we need to count the space we'll need for the argument
+ ** vector and strings.
+ */
+
+ int argbytes = 0;
+ int argc = 0;
+
+ while( args[argc] != NULL ) {
+ int n = strlen( args[argc] ) + 1;
+ // can't go over one page in size
+ if( (argbytes + n) > SZ_PAGE ) {
+ // oops - ignore this and any others
+ break;
+ }
+ argbytes += n;
+ ++argc;
+ }
+
+ // Round up the byte count to the next multiple of four.
+ argbytes = (argbytes + 3) & MOD4_MASK;
+
+ /*
+ ** Allocate the arrays. We are safe using dynamic arrays here
+ ** because we're using the OS stack, not the user stack.
+ **
+ ** We want the argstrings and argv arrays to contain all zeroes.
+ ** The C standard states, in section 6.7.8, that
+ **
+ ** "21 If there are fewer initializers in a brace-enclosed list
+ ** than there are elements or members of an aggregate, or
+ ** fewer characters in a string literal used to initialize an
+ ** array of known size than there are elements in the array,
+ ** the remainder of the aggregate shall be initialized
+ ** implicitly the same as objects that have static storage
+ ** duration."
+ **
+ ** Sadly, because we're using variable-sized arrays, we can't
+ ** rely on this, so we have to call memclr() instead. :-( In
+ ** truth, it doesn't really cost us much more time, but it's an
+ ** annoyance.
+ */
+
+ char argstrings[ argbytes ];
+ char *argv[ argc + 1 ];
+
+ CLEAR( argstrings );
+ CLEAR( argv );
+
+ // Next, duplicate the argument strings, and create pointers to
+ // each one in our argv.
+ char *tmp = argstrings;
+ for( int i = 0; i < argc; ++i ) {
+ int nb = strlen(args[i]) + 1; // bytes (incl. NUL) in this string
+ strcpy( tmp, args[i] ); // add to our buffer
+ argv[i] = tmp; // remember where it was
+ tmp += nb; // move on
+ }
+
+ // trailing NULL pointer
+ argv[argc] = NULL;
+
+ /*
+ ** The pages for the stack were cleared when they were allocated,
+ ** so we don't need to remember to do that.
+ **
+ ** We reserve one longword at the bottom of the stack to hold a
+ ** pointer to where argv is on the stack.
+ **
+ ** The user code was linked with a startup function that defines
+ ** the entry point (_start), calls main(), and then calls exit()
+ ** if main() returns. We need to set up the stack this way:
+ **
+ ** esp -> context <- context save area
+ ** ... <- context save area
+ ** context <- context save area
+ ** entry_pt <- return address for the ISR
+ ** argc <- argument count for main()
+ ** /-> argv <- argv pointer for main()
+ ** | ... <- argv array w/trailing NULL
+ ** | ... <- argv character strings
+ ** \--- ptr <- last word in stack
+ **
+ ** Stack alignment rules for the SysV ABI i386 supplement dictate that
+ ** the 'argc' parameter must be at an address that is a multiple of 16;
+ ** see below for more information.
+ */
+
+ // Pointer to the last word in stack. We get this from the
+ // VM hierarchy. Get the PDE entry for the user address space.
+ pde_t stack_pde = pcb->pdir[USER_PDE];
+
+ // The PDE entry points to the PT, which is an array of PTE. The last
+ // two entries are for the stack; pull out the last one.
+ pte_t stack_pte = ((pte_t *)(stack_pde & MOD4K_MASK))[USER_STK_PTE2];
+
+ // OK, now we have the PTE. The frame address of the last page is
+ // in this PTE. Find the address immediately after that.
+ uint32_t *ptr = (uint32_t *)
+ ((uint32_t)(stack_pte & MOD4K_MASK) + SZ_PAGE);
+
+ // Pointer to where the arg strings should be filled in.
+ char *strings = (char *) ( (uint32_t) ptr - argbytes );
+
+ // back the pointer up to the nearest word boundary; because we're
+ // moving toward location 0, the nearest word boundary is just the
+ // next smaller address whose low-order two bits are zeroes
+ strings = (char *) ((uint32_t) strings & MOD4_MASK);
+
+ // Copy over the argv strings.
+ memcpy( (void *)strings, argstrings, argbytes );
+
+ /*
+ ** Next, we need to copy over the argv pointers. Start by
+ ** determining where 'argc' should go.
+ **
+ ** Stack alignment is controlled by the SysV ABI i386 supplement,
+ ** version 1.2 (June 23, 2016), which states in section 2.2.2:
+ **
+ ** "The end of the input argument area shall be aligned on a 16
+ ** (32 or 64, if __m256 or __m512 is passed on stack) byte boundary.
+ ** In other words, the value (%esp + 4) is always a multiple of 16
+ ** (32 or 64) when control is transferred to the function entry
+ ** point. The stack pointer, %esp, always points to the end of the
+ ** latest allocated stack frame."
+ **
+ ** Isn't technical documentation fun? Ultimately, this means that
+ ** the first parameter to main() should be on the stack at an address
+ ** that is a multiple of 16.
+ **
+ ** The space needed for argc, argv, and the argv array itself is
+ ** argc + 3 words (argc+1 for the argv entries, plus one word each
+ ** for argc and argv). We back up that much from 'strings'.
+ */
+
+ int nwords = argc + 3;
+ uint32_t *acptr = ((uint32_t *) strings) - nwords;
+
+ /*
+ ** Next, back up until we're at a multiple-of-16 address. Because we
+ ** are moving to a lower address, its upper 28 bits are identical to
+ ** the address we currently have, so we can do this with a bitwise
+ ** AND to just turn off the lower four bits.
+ */
+
+ acptr = (uint32_t *) ( ((uint32_t)acptr) & MOD16_MASK );
+
+ // copy in 'argc'
+ *acptr = argc;
+
+ // next, 'argv', which follows 'argc'; 'argv' points to the
+ // word that follows it in the stack
+ uint32_t *avptr = acptr + 2;
+ *(acptr+1) = (uint32_t) avptr;
+
+ /*
+ ** Next, we copy in all argc+1 pointers.
+ */
+
+ // Adjust and copy the string pointers.
+ for( int i = 0; i <= argc; ++i ) {
+ if( argv[i] != NULL ) {
+ // an actual pointer - adjust it and copy it in
+ *avptr = (uint32_t) strings;
+ // skip to the next entry in the array
+ strings += strlen(argv[i]) + 1;
+ } else {
+ // end of the line!
+ *avptr = NULL;
+ }
+ ++avptr;
+ }
+
+ /*
+ ** Now, we need to set up the initial context for the executing
+ ** process.
+ **
+ ** When this process is dispatched, the context restore code will
+ ** pop all the saved context information off the stack, including
+ ** the saved EIP, CS, and EFLAGS. We set those fields up so that
+ ** the interrupt "returns" to the entry point of the process.
+ */
+
+ // Locate the context save area on the stack.
+ context_t *ctx = ((context_t *) avptr) - 1;
+
+ /*
+ ** We cleared the entire stack earlier, so all the context
+ ** fields currently contain zeroes. We now need to fill in
+ ** all the important fields.
+ */
+
+ ctx->eflags = DEFAULT_EFLAGS; // IE enabled, PPL 0
+ ctx->eip = entry; // initial EIP
+ ctx->cs = GDT_CODE; // segment registers
+ ctx->ss = GDT_STACK;
+ ctx->ds = ctx->es = ctx->fs = ctx->gs = GDT_DATA;
+
+ /*
+ ** Return the new context pointer to the caller. It will be our
+ ** caller's responsibility to schedule this process.
+ */
+
+ return( ctx );
+}
+
+/*
+** PUBLIC FUNCTIONS
+*/
+
+/**
+** Name: user_init
+**
+** Initializes the user support module.
+*/
+void user_init( void ) {
+
+#if TRACING_INIT
+ cio_puts( " User" );
+#endif
+
+ // This is gross, but we need to get this information somehow.
+ // Access the "user blob" data in the second bootstrap sector
+ uint16_t *blobdata = (uint16_t *) USER_BLOB_DATA;
+ user_offset = *blobdata++;
+ user_segment = *blobdata++;
+ user_sectors = *blobdata++;
+
+#if TRACING_USER
+ cio_printf( "\nUser blob: %u sectors @ %04x:%04x", user_sectors,
+ user_segment, user_offset );
+#endif
+
+ // calculate the location of the user blob
+ if( user_sectors > 0 ) {
+
+ // calculate the address of the header
+ user_header = (header_t *)
+ ( KERN_BASE +
+ ( (((uint_t)user_segment) << 4) + ((uint_t)user_offset) )
+ );
+
+ // the program table immediate follows the blob header
+ prog_table = (prog_t *) (user_header + 1);
+
+#if TRACING_USER
+ cio_printf( ", hdr %08x, %u progs, tbl %08x\n", (uint32_t) user_header,
+ user_header->num, (uint32_t) prog_table );
+#endif
+
+ } else {
+ // too bad, so sad!
+ user_header = NULL;
+ prog_table = NULL;
+#if TRACING_USER
+ cio_putchar( '\n' );
+#endif
+ }
+}
+
+/**
+** Name: user_locate
+**
+** Locates a user program in the user code archive.
+**
+** @param what The ID of the user program to find
+**
+** @return pointer to the program table entry in the code archive, or NULL
+*/
+prog_t *user_locate( uint_t what ) {
+
+ // no programs if there is no blob!
+ if( user_header == NULL ) {
+ return NULL;
+ }
+
+ // make sure this is a reasonable program to request
+ if( what >= user_header->num ) {
+ // no such program!
+ return NULL;
+ }
+
+ // find the entry in the program table
+ prog_t *prog = &prog_table[what];
+
+ // if there are no bytes, it's useless
+ if( prog->size < 1 ) {
+ return NULL;
+ }
+
+ // return the program table pointer
+ return prog;
+}
+
+/**
+** Name: user_duplicate
+**
+** Duplicates the memory setup for an existing process.
+**
+** @param new The PCB for the new copy of the program
+** @param old The PCB for the existing the program
+**
+** @return the status of the duplicate attempt
+*/
+int user_duplicate( pcb_t *new, pcb_t *old ) {
+
+ // We need to do a recursive duplication of the process address
+ // space of the current process. First, we create a new user
+ // page directory. Next, we'll duplicate the USER_PDE page
+ // table. Finally, we'll go through that table and duplicate
+ // all the frames.
+
+ // create the initial VM hierarchy
+ pde_t *pdir = vm_mkuvm();
+ if( pdir == NULL ) {
+ return E_NO_MEMORY;
+ }
+ new->pdir = pdir;
+
+ // next, add a USER_PDE page table that's a duplicate of the
+ // current process' page table
+ if( !vm_uvmdup(old->pdir,new->pdir) ) {
+ // check for memory leak?
+ return E_NO_MEMORY;
+ }
+
+ // now, iterate through the entries, replacing the frame
+ // numbers with duplicate frames
+ //
+ // NOTE: we only deal with pdir[0] here, as we are limiting
+ // the user address space to the first 4MB
+ pte_t *pt = (pte_t *) (pdir[USER_PDE]);
+
+ for( int i = 0; i < N_PTE; ++i ) {
+
+ // if this entry is present,
+ if( IS_PRESENT(*pt) ) {
+
+ // duplicate the page
+ void *tmp = vm_pagedup( (void *) (*pt & FRAME_MASK) );
+ // replace the old frame number with the new one
+ *pt = (pte_t) (((uint32_t)tmp) | (*pt & PERM_MASK));
+
+ } else {
+
+ *pt = 0;
+
+ }
+ ++pt;
+ }
+
+ return SUCCESS;
+}
+
+/**
+** Name: user_load
+**
+** Loads a user program from the user code archive into memory.
+** Allocates all needed frames and sets up the VM tables.
+**
+** @param ptab A pointer to the program table entry to be loaded
+** @param pcb The PCB for the program being loaded
+** @param args The argument vector for the program
+**
+** @return the status of the load attempt
+*/
+int user_load( prog_t *ptab, pcb_t *pcb, const char **args ) {
+
+ // NULL pointers are bad!
+ assert1( ptab != NULL );
+ assert1( pcb != NULL );
+ assert1( args != NULL );
+
+ // locate the ELF binary
+ elfhdr_t *hdr = (elfhdr_t *) ((uint32_t)user_header + ptab->offset);
+
+#if TRACING_ELF
+ cio_printf( "Load: ptab %08x: '%s', off %08x, size %08x, flags %08x\n",
+ (uint32_t) ptab, ptab->name, ptab->offset, ptab->size,
+ ptab->flags );
+ cio_printf( " args %08x:", (uint32_t) args );
+ for( int i = 0; args[i] != NULL; ++i ) {
+ cio_printf( " [%d] %s", i, args[i] );
+ }
+ cio_printf( "\n pcb %08x (pid %u)\n", (uint32_t) pcb, pcb->pid );
+ dump_fhdr( hdr );
+#endif
+
+ // verify the ELF header
+ if( hdr->e_ident.f.magic != ELF_MAGIC ) {
+ return E_BAD_PARAM;
+ }
+
+ // allocate a page directory
+ pcb->pdir = vm_mkuvm();
+ if( pcb->pdir == NULL ) {
+ return E_NO_MEMORY;
+ }
+
+ // read all the program headers
+ int stat = read_phdrs( hdr, pcb );
+ if( stat != SUCCESS ) {
+ // TODO figure out a better way to deal with this
+ PANIC( 0, "user_load: phdr read failed" );
+ }
+
+ // next, set up the runtime stack - just like setting up loadable
+ // sections, except nothing to copy
+ stat = vm_add( pcb->pdir, true, false, (void *) USER_STACK,
+ SZ_USTACK, NULL, 0 );
+ if( stat != SUCCESS ) {
+ // TODO yadda yadda...
+ PANIC( 0, "user_load: vm_add failed" );
+ }
+
+ // set up the command-line arguments
+ pcb->context = stack_setup( pcb, hdr->e_entry, args );
+
+ return SUCCESS;
+}
+
+/**
+** Name: user_cleanup
+**
+** "Unloads" a user program. Deallocates all memory frames and
+** cleans up the VM structures.
+**
+** @param pcb The PCB of the program to be unloaded
+*/
+void user_cleanup( pcb_t *pcb ) {
+
+ if( pcb == NULL ) {
+ // should this be an error?
+ return;
+ }
+
+ vm_free( pcb->pdir );
+ pcb->pdir = NULL;
+}
diff --git a/kernel/vm.c b/kernel/vm.c
new file mode 100644
index 0000000..46c4eab
--- /dev/null
+++ b/kernel/vm.c
@@ -0,0 +1,585 @@
+/**
+** @file vm.c
+**
+** @author CSCI-452 class of 20245
+**
+** @brief Kernel VM support
+*/
+
+#define KERNEL_SRC
+
+#include <common.h>
+
+#include <vm.h>
+#include <vmtables.h>
+
+#include <kmem.h>
+#include <procs.h>
+#include <x86/arch.h>
+#include <x86/ops.h>
+
+/*
+** PRIVATE DEFINITIONS
+*/
+
+/*
+** PRIVATE DATA TYPES
+*/
+
+/*
+** PRIVATE GLOBAL VARIABLES
+*/
+
+/*
+** PUBLIC GLOBAL VARIABLES
+*/
+
+// created page directory for the kernel
+pde_t *kpdir;
+
+/*
+** PRIVATE FUNCTIONS
+*/
+
+/**
+** Name: vm_isr
+**
+** Description: Page fault handler
+**
+** @param vector Interrupt vector number
+** @param code Error code pushed onto the stack
+*/
+static void vm_isr( int vector, int code ) {
+
+ // get whatever information we can from the fault
+ pfec_t fault;
+ fault.u = (uint32_t) code;
+ uint32_t addr = r_cr2();
+
+ // report what we found
+ sprint( b256,
+ "** page fault @ 0x%08x %cP %c %cM %cRSV %c %cPK %cSS %cHLAT %cSGZ",
+ addr,
+ fault.s.p ? ' ' : '!',
+ fault.s.w ? 'W' : 'R',
+ fault.s.us ? 'U' : 'S',
+ fault.s.rsvd ? ' ' : '!',
+ fault.s.id ? 'I' : 'D',
+ fault.s.pk ? ' ' : '!',
+ fault.s.ss ? ' ' : '!',
+ fault.s.hlat ? ' ' : '!',
+ fault.s.sgz ? ' ' : '!'
+ );
+
+ // and give up
+ PANIC( 0, b256 );
+}
+
+/**
+** Name: uva2kva
+**
+** Convert a user VA into a kernel address
+*/
+__attribute__((__unused__))
+static void *uva2kva( pde_t *pdir, void *va ) {
+
+ // find the PMT entry for this address
+ pte_t *pte = vm_getpte( pdir, va, false );
+ if( pte == NULL ) {
+ return NULL;
+ }
+
+ // is this a valid address for the user?
+ if( IS_PRESENT(*pte) ) {
+ return 0;
+ }
+
+ if( IS_LARGE(*pte) ) {
+ return 0;
+ }
+
+ // get the physical address
+ uint32_t frame = *pte & FRAME_MASK; // keep the frame address
+ frame |= ((uint32_t) va) & PERM_MASK; // OR in the lower 12 bits
+
+ return (void *) frame;
+}
+
+
+/*
+** PUBLIC FUNCTIONS
+*/
+
+/**
+** Name: vm_init
+**
+** Description: Initialize the VM module
+*/
+void vm_init( void ) {
+
+#if TRACING_INIT
+ cio_puts( " VM" );
+#endif
+
+ // set up the kernel's page directory
+ kpdir = vm_mkkvm();
+ assert( kpdir != NULL );
+
+ // install the page fault handler
+ install_isr( VEC_PAGE_FAULT, vm_isr );
+}
+
+/**
+** Name: vm_pagedup
+**
+** Duplicate a page of memory
+**
+** @param old Pointer to the first byte of a page
+**
+** @return a pointer to the new, duplicate page, or NULL
+*/
+void *vm_pagedup( void *old ) {
+ void *new = (void *) km_page_alloc();
+ if( new != NULL ) {
+ memcpy( new, old, SZ_PAGE );
+ }
+ return new;
+}
+
+/**
+** Name: vm_ptdup
+**
+** Duplicate a page directory entry
+**
+** @param dst Pointer to where the duplicate should go
+** @param curr Pointer to the entry to be duplicated
+**
+** @return true on success, else false
+*/
+bool_t vm_ptdup( pde_t *dst, pde_t *curr ) {
+
+#if TRACING_VM
+ cio_printf( "vm_ptdup dst %08x curr %08x\n",
+ (uint32_t) dst, (uint32_t) curr );
+#endif
+ // simplest case
+ if( *curr == 0 ) {
+ *dst = 0;
+ return true;
+ }
+
+ // OK, we have an entry; allocate a page table
+ pte_t *pt = (pte_t *) km_page_alloc();
+ if( pt == NULL ) {
+ return false;
+ }
+
+ // pointer to the first PTE in the current table
+ pte_t *old = (pte_t *) (((uint32_t) *curr) & FRAME_MASK);
+ // pointer to the first PTE in the new table
+ pte_t *new = pt;
+
+ for( int i = 0 ; i < N_PTE; ++i ) {
+ if( IS_PRESENT(*old) ) {
+ *new = 0;
+ } else {
+ *new = *old;
+ }
+ ++old;
+ ++new;
+ }
+
+ // assign the page table into the new page directory
+ // upper 22 bits from 'pt', lower 12 from '*curr'
+ *dst = (pde_t) (
+ (((uint32_t)pt) & FRAME_MASK) |
+ (((uint32_t)(*curr)) & PERM_MASK )
+ );
+
+ return true;
+}
+
+/**
+** Name: vm_getpte
+**
+** Return the address of the PTE corresponding to the virtual address
+** 'va' within the address space controlled by 'pgdir'. If there is no
+** page table for that VA and 'alloc' is true, create the necessary
+** page table entries.
+**
+** @param pdir Pointer to the page directory to be searched
+** @param va The virtual address we're looking for
+** @param alloc Should we allocate a page table if there isn't one?
+**
+** @return A pointer to the page table entry for this VA, or NULL
+*/
+pte_t *vm_getpte( pde_t *pdir, const void *va, bool_t alloc ) {
+ pte_t *ptab;
+
+ // sanity check
+ assert1( pdir != NULL );
+
+ // get the PDIR entry for this virtual address
+ pde_t *pde = &pdir[ PDIX(va) ];
+
+ // is it already set up?
+ if( IS_PRESENT(*pde) ) {
+
+ // yes!
+ ptab = (pte_t*)P2V(PTE_ADDR(*pde));
+
+ } else {
+
+ // no - should we create it?
+ if( !alloc ) {
+ // nope, so just return
+ return NULL;
+ }
+
+ // yes - try to allocate a page table
+ ptab = (pte_t *) km_page_alloc();
+ if( ptab == NULL ) {
+ WARNING( "can't allocate page table" );
+ return NULL;
+ }
+
+ // who knows what was left in this page....
+ memclr( ptab, SZ_PAGE );
+
+ // add this to the page directory
+ //
+ // we set this up to allow general access; this could be
+ // controlled by setting access control in the page table
+ // entries, if necessary.
+ *pde = V2P(ptab) | PDE_P | PDE_RW;
+ }
+
+ // finally, return a pointer to the entry in the
+ // page table for this VA
+ return &ptab[ PTIX(va) ];
+}
+
+// Set up kernel part of a page table.
+pde_t *vm_mkkvm( void )
+{
+ mapping_t *k;
+
+ // allocate the page directory
+ pde_t *pdir = km_page_alloc();
+ if( pdir == NULL ) {
+ return NULL;
+ }
+
+ // clear it out to disable all the entries
+ memclr( pdir, SZ_PAGE );
+
+ // map in all the page ranges
+ k = kmap;
+ for( int i = 0; i < n_kmap; ++i, ++k ) {
+ int stat = vm_map( pdir, ((void *)k->va_start),
+ k->pa_end - k->pa_start,
+ k->pa_start, k->perm );
+ if( stat != SUCCESS ) {
+ vm_free( pdir );
+ return 0;
+ }
+ }
+
+ return pdir;
+}
+
+/*
+** Creates an initial user VM table hierarchy by copying the
+** system entries into a new page directory.
+**
+** @return a pointer to the new page directory, or NULL
+*/
+pde_t *vm_mkuvm( void ) {
+
+ // allocate the directory
+ pde_t *new = (pde_t *) km_page_alloc();
+ if( new == NULL ) {
+ return NULL;
+ }
+
+ // iterate through the kernel page directory
+ pde_t *curr = kpdir;
+ pde_t *dst = new;
+ for( int i = 0; i < N_PDE; ++i ) {
+
+ if( *curr != 0 ) {
+ // found an active one - duplicate it
+ if( !vm_ptdup(dst,curr) ) {
+ return NULL;
+ }
+ }
+
+ ++curr;
+ ++dst;
+ }
+
+ return new;
+
+}
+
+/**
+** Name: vm_set_kvm
+**
+** Switch the page table register to the kernel's page directory.
+*/
+void vm_set_kvm( void ) {
+ w_cr3( V2P(kpdir) ); // switch to the kernel page table
+}
+
+/**
+** Name: vm_set_uvm
+**
+** Switch the page table register to the page directory for a user process.
+**
+** @param p PCB of the process we're switching to
+*/
+void vm_set_uvm( pcb_t *p ) {
+ assert( p != NULL );
+ assert( p->pdir != NULL );
+
+ w_cr3( V2P(p->pdir) ); // switch to process's address space
+}
+
+/**
+** Name: vm_add
+**
+** Add pages to the page hierarchy for a process, copying data into
+** them if necessary.
+**
+** @param pdir Pointer to the page directory to modify
+** @param wr "Writable" flag for the PTE
+** @param sys "System" flag for the PTE
+** @param va Starting VA of the range
+** @param size Amount of physical memory to allocate (bytes)
+** @param data Pointer to data to copy, or NULL
+** @param bytes Number of bytes to copy
+**
+** @return status of the allocation attempt
+*/
+int vm_add( pde_t *pdir, bool_t wr, bool_t sys,
+ void *va, uint32_t size, char *data, uint32_t bytes ) {
+
+ // how many pages do we need?
+ uint_t npages = ((size & MOD4K_BITS) ? PGUP(size) : size) >> MOD4K_SHIFT;
+
+ // permission set for the PTEs
+ uint_t entrybase = PTE_P;
+ if( wr ) {
+ entrybase |= PTE_RW;
+ }
+ if( sys ) {
+ entrybase |= PTE_US;
+ }
+
+#if TRACING_VM
+ cio_printf( "vm_add: pdir %08x, %s, va %08x (%u, %u pgs)\n",
+ (uint32_t) pdir, wr ? "W" : "!W", (uint32_t) va, size );
+ cio_printf( " from %08x, %u bytes, perms %08x\n",
+ (uint32_t) data, bytes, entrybase );
+#endif
+
+ // iterate through the pages
+
+ for( int i = 0; i < npages; ++i ) {
+
+ // figure out where this page will go in the hierarchy
+ pte_t *pte = vm_getpte( pdir, va, true );
+ if( pte == NULL ) {
+ // TODO if i > 0, this isn't the first frame - is
+ // there anything to do about other frames?
+ // POSSIBLE MEMORY LEAK?
+ return E_NO_MEMORY;
+ }
+
+ // allocate the frame
+ void *page = km_page_alloc();
+ if( page == NULL ) {
+ // TODO same question here
+ return E_NO_MEMORY;
+ }
+
+ // clear it all out
+ memclr( page, SZ_PAGE );
+
+ // create the PTE for this frame
+ uint32_t entry = (uint32_t) (PTE_ADDR(page) | entrybase);
+ *pte = entry;
+
+ // copy data if we need to
+ if( data != NULL && bytes > 0 ) {
+ // how much to copy
+ uint_t num = bytes > SZ_PAGE ? SZ_PAGE : bytes;
+ // do it!
+ memcpy( (void *)page, (void *)data, num );
+ // adjust all the pointers
+ data += num; // where to continue
+ bytes -= num; // what's left to copy
+ }
+
+ // bump the virtual address
+ va += SZ_PAGE;
+ }
+
+ return SUCCESS;
+
+}
+
+/**
+** Name: vm_free
+**
+** Deallocate a page table hierarchy and all physical memory frames
+** in the user portion.
+**
+** @param pdir Pointer to the page directory
+*/
+void vm_free( pde_t *pdir ) {
+
+ // do we have anything to do?
+ if( pdir == NULL ) {
+ return;
+ }
+
+ // iterate through the page directory entries, freeing the
+ // PMTS and the frames they point to
+ pde_t *curr = pdir;
+ for( int i = 0; i < N_PDE; ++i ) {
+
+ // does this entry point to anything useful?
+ if( IS_PRESENT(*curr) ) {
+
+ // yes - get the PMT pointer
+ pte_t *pte = (pte_t *) PTE_ADDR(*curr);
+
+ // walk the PMT
+ for( int j = 0; j < N_PTE; ++j ) {
+ // does this entry point to a frame?
+ if( IS_PRESENT(*pte) ) {
+ // yes - free the frame
+ km_page_free( (void *) PTE_ADDR(*pte) );
+ // mark it so we don't get surprised
+ *pte = 0;
+ }
+ // move on
+ ++pte;
+ }
+ // now, free the PMT itself
+ km_page_free( (void *) PDE_ADDR(*curr) );
+ *curr = 0;
+ }
+
+ // move to the next entry
+ ++curr;
+ }
+
+ // finally, free the PDIR itself
+ km_page_free( (void *) pdir );
+}
+
+/*
+** Name: vm_map
+**
+** Create PTEs for virtual addresses starting at 'va' that refer to
+** physical addresses in the range [pa, pa+size-1]. We aren't guaranteed
+** that va is page-aligned.
+**
+** @param pdir Page directory for this address space
+** @param va The starting virtual address
+** @param size Length of the range to be mapped
+** @param pa The starting physical address
+** @param perm Permission bits for the PTEs
+*/
+int vm_map( pde_t *pdir, void *va, uint_t size, uint_t pa, int perm ) {
+ pte_t *pte;
+
+ // round the VA down to its page boundary
+ char *addr = (char*)PGDOWN((uint_t)va);
+
+ // round the end of the range down to its page boundary
+ char *last = (char*)PGDOWN(((uint_t)va) + size - 1);
+
+ for(;;) {
+
+ // get a pointer to the PTE for the current VA
+ if( (pte = vm_getpte(pdir, addr, 1)) == 0 ) {
+ // couldn't find it
+ return E_NO_PTE;
+ }
+
+ // if this entry has already been mapped, we're in trouble
+ if( IS_PRESENT(*pte) ) {
+ PANIC( 0, "mapping an already-mapped address" );
+ }
+
+ // ok, set the PTE as requested
+ *pte = pa | perm | PTE_P;
+
+ // are we done?
+ if( addr == last ) {
+ break;
+ }
+
+ // nope - move to the next page
+ addr += SZ_PAGE;
+ pa += SZ_PAGE;
+ }
+ return 0;
+}
+
+/**
+** Name: vm_uvmdup
+**
+** Create a duplicate of the user portio of an existing page table
+** hierarchy. We assume that the "new" page directory exists and
+** the system portions of it should not be touched.
+**
+** Note: we do not duplicate the frames in the hierarchy - we just
+** create a duplicate of the hierarchy itself. This means that we
+** now have two sets of page tables that refer to the same user-level
+** frames in memory.
+**
+** @param old Existing page directory
+** @param new New page directory
+**
+** @return status of the duplication attempt
+*/
+int vm_uvmdup( pde_t *old, pde_t *new ) {
+
+ if( old == NULL || new == NULL ) {
+ return E_BAD_PARAM;
+ }
+
+ // we only want to deal with the "user" half of the address space
+ for( int i = 0; i < (N_PDE >> 1); ++i ) {
+
+ // is this entry in use?
+ if( IS_PRESENT(*old) ) {
+
+ // yes. if it points to a 4MB page, we just copy it;
+ // otherwise, we must duplicate the next level PMT
+
+ *new = *old; // copy the entry
+
+ if( !IS_LARGE(*old) ) {
+
+ // it's a 4KB page, so we need to duplicate the PMT
+ pte_t *newpmt = (pte_t *) vm_pagedup( (void *) (*old & FRAME_MASK) );
+ if( newpmt == NULL ) {
+ return E_NO_MEMORY;
+ }
+
+ // create the new PDE entry by replacing the frame #
+ *new = (pde_t) (((uint32_t)newpmt) | PERMS(*old));
+ }
+ }
+
+ ++old;
+ ++new;
+ }
+
+ return SUCCESS;
+}
diff --git a/kernel/vmtables.c b/kernel/vmtables.c
new file mode 100644
index 0000000..306b1f6
--- /dev/null
+++ b/kernel/vmtables.c
@@ -0,0 +1,270 @@
+/**
+** @file vmtables.c
+**
+** @author CSCI-452 class of 20245
+**
+** @brief Kernel VM tables
+**
+** Compilation options:
+**
+** MAKE_IDENTITY_MAP Creates a page table that identity-maps the first
+** 4MB of main memory.
+*/
+
+#define KERNEL_SRC
+
+#include <common.h>
+
+#include <kmem.h>
+#include <procs.h>
+#include <vm.h>
+#include <x86/arch.h>
+
+// defined for us by the linker
+extern char _data[];
+
+/*
+** Initial page directory, for when the kernel is starting up
+**
+** we use large (4MB) pages here to allow us to use a one-level
+** paging hierarchy; the kernel will create a new page table
+** hierarchy once memory is initialized
+**
+** We only map the first 2GB of memory, plus a 4MB portion of
+** the upper half, which we map to cover the first 4MB of
+** memory.
+*/
+
+// identity-map 4MB page #n
+#define L(n) [n] = (pde_t) ( (TO_4MFRAME((n))) | (PDE_P|PDE_RW|PDE_PS) )
+
+ALIGN(SZ_PAGE)
+pde_t firstpdir[N_PDE] = {
+
+ // Map VA range [0, 2GB] to PA range [0, 2GB]
+L(0x000), L(0x001), L(0x002), L(0x003), L(0x004), L(0x005), L(0x006), L(0x007),
+L(0x008), L(0x009), L(0x00a), L(0x00b), L(0x00c), L(0x00d), L(0x00e), L(0x00f),
+L(0x010), L(0x011), L(0x012), L(0x013), L(0x014), L(0x015), L(0x016), L(0x017),
+L(0x018), L(0x019), L(0x01a), L(0x01b), L(0x01c), L(0x01d), L(0x01e), L(0x01f),
+L(0x020), L(0x021), L(0x022), L(0x023), L(0x024), L(0x025), L(0x026), L(0x027),
+L(0x028), L(0x029), L(0x02a), L(0x02b), L(0x02c), L(0x02d), L(0x02e), L(0x02f),
+L(0x030), L(0x031), L(0x032), L(0x033), L(0x034), L(0x035), L(0x036), L(0x037),
+L(0x038), L(0x039), L(0x03a), L(0x03b), L(0x03c), L(0x03d), L(0x03e), L(0x03f),
+L(0x040), L(0x041), L(0x042), L(0x043), L(0x044), L(0x045), L(0x046), L(0x047),
+L(0x048), L(0x049), L(0x04a), L(0x04b), L(0x04c), L(0x04d), L(0x04e), L(0x04f),
+L(0x050), L(0x051), L(0x052), L(0x053), L(0x054), L(0x055), L(0x056), L(0x057),
+L(0x058), L(0x059), L(0x05a), L(0x05b), L(0x05c), L(0x05d), L(0x05e), L(0x05f),
+L(0x060), L(0x061), L(0x062), L(0x063), L(0x064), L(0x065), L(0x066), L(0x067),
+L(0x068), L(0x069), L(0x06a), L(0x06b), L(0x06c), L(0x06d), L(0x06e), L(0x06f),
+L(0x070), L(0x071), L(0x072), L(0x073), L(0x074), L(0x075), L(0x076), L(0x077),
+L(0x078), L(0x079), L(0x07a), L(0x07b), L(0x07c), L(0x07d), L(0x07e), L(0x07f),
+L(0x080), L(0x081), L(0x082), L(0x083), L(0x084), L(0x085), L(0x086), L(0x087),
+L(0x088), L(0x089), L(0x08a), L(0x08b), L(0x08c), L(0x08d), L(0x08e), L(0x08f),
+L(0x090), L(0x091), L(0x092), L(0x093), L(0x094), L(0x095), L(0x096), L(0x097),
+L(0x098), L(0x099), L(0x09a), L(0x09b), L(0x09c), L(0x09d), L(0x09e), L(0x09f),
+L(0x0a0), L(0x0a1), L(0x0a2), L(0x0a3), L(0x0a4), L(0x0a5), L(0x0a6), L(0x0a7),
+L(0x0a8), L(0x0a9), L(0x0aa), L(0x0ab), L(0x0ac), L(0x0ad), L(0x0ae), L(0x0af),
+L(0x0b0), L(0x0b1), L(0x0b2), L(0x0b3), L(0x0b4), L(0x0b5), L(0x0b6), L(0x0b7),
+L(0x0b8), L(0x0b9), L(0x0ba), L(0x0bb), L(0x0bc), L(0x0bd), L(0x0be), L(0x0bf),
+L(0x0c0), L(0x0c1), L(0x0c2), L(0x0c3), L(0x0c4), L(0x0c5), L(0x0c6), L(0x0c7),
+L(0x0c8), L(0x0c9), L(0x0ca), L(0x0cb), L(0x0cc), L(0x0cd), L(0x0ce), L(0x0cf),
+L(0x0d0), L(0x0d1), L(0x0d2), L(0x0d3), L(0x0d4), L(0x0d5), L(0x0d6), L(0x0d7),
+L(0x0d8), L(0x0d9), L(0x0da), L(0x0db), L(0x0dc), L(0x0dd), L(0x0de), L(0x0df),
+L(0x0e0), L(0x0e1), L(0x0e2), L(0x0e3), L(0x0e4), L(0x0e5), L(0x0e6), L(0x0e7),
+L(0x0e8), L(0x0e9), L(0x0ea), L(0x0eb), L(0x0ec), L(0x0ed), L(0x0ee), L(0x0ef),
+L(0x0f0), L(0x0f1), L(0x0f2), L(0x0f3), L(0x0f4), L(0x0f5), L(0x0f6), L(0x0f7),
+L(0x0f8), L(0x0f9), L(0x0fa), L(0x0fb), L(0x0fc), L(0x0fd), L(0x0fe), L(0x0ff),
+L(0x100), L(0x101), L(0x102), L(0x103), L(0x104), L(0x105), L(0x106), L(0x107),
+L(0x108), L(0x109), L(0x10a), L(0x10b), L(0x10c), L(0x10d), L(0x10e), L(0x10f),
+L(0x110), L(0x111), L(0x112), L(0x113), L(0x114), L(0x115), L(0x116), L(0x117),
+L(0x118), L(0x119), L(0x11a), L(0x11b), L(0x11c), L(0x11d), L(0x11e), L(0x11f),
+L(0x120), L(0x121), L(0x122), L(0x123), L(0x124), L(0x125), L(0x126), L(0x127),
+L(0x128), L(0x129), L(0x12a), L(0x12b), L(0x12c), L(0x12d), L(0x12e), L(0x12f),
+L(0x130), L(0x131), L(0x132), L(0x133), L(0x134), L(0x135), L(0x136), L(0x137),
+L(0x138), L(0x139), L(0x13a), L(0x13b), L(0x13c), L(0x13d), L(0x13e), L(0x13f),
+L(0x140), L(0x141), L(0x142), L(0x143), L(0x144), L(0x145), L(0x146), L(0x147),
+L(0x148), L(0x149), L(0x14a), L(0x14b), L(0x14c), L(0x14d), L(0x14e), L(0x14f),
+L(0x150), L(0x151), L(0x152), L(0x153), L(0x154), L(0x155), L(0x156), L(0x157),
+L(0x158), L(0x159), L(0x15a), L(0x15b), L(0x15c), L(0x15d), L(0x15e), L(0x15f),
+L(0x160), L(0x161), L(0x162), L(0x163), L(0x164), L(0x165), L(0x166), L(0x167),
+L(0x168), L(0x169), L(0x16a), L(0x16b), L(0x16c), L(0x16d), L(0x16e), L(0x16f),
+L(0x170), L(0x171), L(0x172), L(0x173), L(0x174), L(0x175), L(0x176), L(0x177),
+L(0x178), L(0x179), L(0x17a), L(0x17b), L(0x17c), L(0x17d), L(0x17e), L(0x17f),
+L(0x180), L(0x181), L(0x182), L(0x183), L(0x184), L(0x185), L(0x186), L(0x187),
+L(0x188), L(0x189), L(0x18a), L(0x18b), L(0x18c), L(0x18d), L(0x18e), L(0x18f),
+L(0x190), L(0x191), L(0x192), L(0x193), L(0x194), L(0x195), L(0x196), L(0x197),
+L(0x198), L(0x199), L(0x19a), L(0x19b), L(0x19c), L(0x19d), L(0x19e), L(0x19f),
+L(0x1a0), L(0x1a1), L(0x1a2), L(0x1a3), L(0x1a4), L(0x1a5), L(0x1a6), L(0x1a7),
+L(0x1a8), L(0x1a9), L(0x1aa), L(0x1ab), L(0x1ac), L(0x1ad), L(0x1ae), L(0x1af),
+L(0x1b0), L(0x1b1), L(0x1b2), L(0x1b3), L(0x1b4), L(0x1b5), L(0x1b6), L(0x1b7),
+L(0x1b8), L(0x1b9), L(0x1ba), L(0x1bb), L(0x1bc), L(0x1bd), L(0x1be), L(0x1bf),
+L(0x1c0), L(0x1c1), L(0x1c2), L(0x1c3), L(0x1c4), L(0x1c5), L(0x1c6), L(0x1c7),
+L(0x1c8), L(0x1c9), L(0x1ca), L(0x1cb), L(0x1cc), L(0x1cd), L(0x1ce), L(0x1cf),
+L(0x1d0), L(0x1d1), L(0x1d2), L(0x1d3), L(0x1d4), L(0x1d5), L(0x1d6), L(0x1d7),
+L(0x1d8), L(0x1d9), L(0x1da), L(0x1db), L(0x1dc), L(0x1dd), L(0x1de), L(0x1df),
+L(0x1e0), L(0x1e1), L(0x1e2), L(0x1e3), L(0x1e4), L(0x1e5), L(0x1e6), L(0x1e7),
+L(0x1e8), L(0x1e9), L(0x1ea), L(0x1eb), L(0x1ec), L(0x1ed), L(0x1ee), L(0x1ef),
+L(0x1f0), L(0x1f1), L(0x1f2), L(0x1f3), L(0x1f4), L(0x1f5), L(0x1f6), L(0x1f7),
+L(0x1f8), L(0x1f9), L(0x1fa), L(0x1fb), L(0x1fc), L(0x1fd), L(0x1fe), L(0x1ff),
+
+ // Map VA range [KERN_BASE, KERN_BASE+4MB] to PA range [0, 4MB]
+ [PDIX(KERN_BASE)] = (pde_t) (PDE_P | PDE_RW | PDE_PS)
+};
+
+#ifdef MAKE_IDENTITY_MAP
+/*
+** "Identity" page map table.
+**
+** This just maps the first 4MB of physical memory. It is initialized
+** in vm_init().
+**
+** This could be converted into a 4GB map of 4MB pages by turning on
+** the PDE_PS bit in each entry.
+*/
+
+// identity-map 4KB page #n
+#define S(n) [n] = (pte_t) ( (TO_4KFRAME((n))) | (PTE_P|PTE_RW) )
+
+pte_t id_map[N_PTE] = {
+S(0x000), S(0x001), S(0x002), S(0x003), S(0x004), S(0x005), S(0x006), S(0x007),
+S(0x008), S(0x009), S(0x00a), S(0x00b), S(0x00c), S(0x00d), S(0x00e), S(0x00f),
+S(0x010), S(0x011), S(0x012), S(0x013), S(0x014), S(0x015), S(0x016), S(0x017),
+S(0x018), S(0x019), S(0x01a), S(0x01b), S(0x01c), S(0x01d), S(0x01e), S(0x01f),
+S(0x020), S(0x021), S(0x022), S(0x023), S(0x024), S(0x025), S(0x026), S(0x027),
+S(0x028), S(0x029), S(0x02a), S(0x02b), S(0x02c), S(0x02d), S(0x02e), S(0x02f),
+S(0x030), S(0x031), S(0x032), S(0x033), S(0x034), S(0x035), S(0x036), S(0x037),
+S(0x038), S(0x039), S(0x03a), S(0x03b), S(0x03c), S(0x03d), S(0x03e), S(0x03f),
+S(0x040), S(0x041), S(0x042), S(0x043), S(0x044), S(0x045), S(0x046), S(0x047),
+S(0x048), S(0x049), S(0x04a), S(0x04b), S(0x04c), S(0x04d), S(0x04e), S(0x04f),
+S(0x050), S(0x051), S(0x052), S(0x053), S(0x054), S(0x055), S(0x056), S(0x057),
+S(0x058), S(0x059), S(0x05a), S(0x05b), S(0x05c), S(0x05d), S(0x05e), S(0x05f),
+S(0x060), S(0x061), S(0x062), S(0x063), S(0x064), S(0x065), S(0x066), S(0x067),
+S(0x068), S(0x069), S(0x06a), S(0x06b), S(0x06c), S(0x06d), S(0x06e), S(0x06f),
+S(0x070), S(0x071), S(0x072), S(0x073), S(0x074), S(0x075), S(0x076), S(0x077),
+S(0x078), S(0x079), S(0x07a), S(0x07b), S(0x07c), S(0x07d), S(0x07e), S(0x07f),
+S(0x080), S(0x081), S(0x082), S(0x083), S(0x084), S(0x085), S(0x086), S(0x087),
+S(0x088), S(0x089), S(0x08a), S(0x08b), S(0x08c), S(0x08d), S(0x08e), S(0x08f),
+S(0x090), S(0x091), S(0x092), S(0x093), S(0x094), S(0x095), S(0x096), S(0x097),
+S(0x098), S(0x099), S(0x09a), S(0x09b), S(0x09c), S(0x09d), S(0x09e), S(0x09f),
+S(0x0a0), S(0x0a1), S(0x0a2), S(0x0a3), S(0x0a4), S(0x0a5), S(0x0a6), S(0x0a7),
+S(0x0a8), S(0x0a9), S(0x0aa), S(0x0ab), S(0x0ac), S(0x0ad), S(0x0ae), S(0x0af),
+S(0x0b0), S(0x0b1), S(0x0b2), S(0x0b3), S(0x0b4), S(0x0b5), S(0x0b6), S(0x0b7),
+S(0x0b8), S(0x0b9), S(0x0ba), S(0x0bb), S(0x0bc), S(0x0bd), S(0x0be), S(0x0bf),
+S(0x0c0), S(0x0c1), S(0x0c2), S(0x0c3), S(0x0c4), S(0x0c5), S(0x0c6), S(0x0c7),
+S(0x0c8), S(0x0c9), S(0x0ca), S(0x0cb), S(0x0cc), S(0x0cd), S(0x0ce), S(0x0cf),
+S(0x0d0), S(0x0d1), S(0x0d2), S(0x0d3), S(0x0d4), S(0x0d5), S(0x0d6), S(0x0d7),
+S(0x0d8), S(0x0d9), S(0x0da), S(0x0db), S(0x0dc), S(0x0dd), S(0x0de), S(0x0df),
+S(0x0e0), S(0x0e1), S(0x0e2), S(0x0e3), S(0x0e4), S(0x0e5), S(0x0e6), S(0x0e7),
+S(0x0e8), S(0x0e9), S(0x0ea), S(0x0eb), S(0x0ec), S(0x0ed), S(0x0ee), S(0x0ef),
+S(0x0f0), S(0x0f1), S(0x0f2), S(0x0f3), S(0x0f4), S(0x0f5), S(0x0f6), S(0x0f7),
+S(0x0f8), S(0x0f9), S(0x0fa), S(0x0fb), S(0x0fc), S(0x0fd), S(0x0fe), S(0x0ff),
+S(0x100), S(0x101), S(0x102), S(0x103), S(0x104), S(0x105), S(0x106), S(0x107),
+S(0x108), S(0x109), S(0x10a), S(0x10b), S(0x10c), S(0x10d), S(0x10e), S(0x10f),
+S(0x110), S(0x111), S(0x112), S(0x113), S(0x114), S(0x115), S(0x116), S(0x117),
+S(0x118), S(0x119), S(0x11a), S(0x11b), S(0x11c), S(0x11d), S(0x11e), S(0x11f),
+S(0x120), S(0x121), S(0x122), S(0x123), S(0x124), S(0x125), S(0x126), S(0x127),
+S(0x128), S(0x129), S(0x12a), S(0x12b), S(0x12c), S(0x12d), S(0x12e), S(0x12f),
+S(0x130), S(0x131), S(0x132), S(0x133), S(0x134), S(0x135), S(0x136), S(0x137),
+S(0x138), S(0x139), S(0x13a), S(0x13b), S(0x13c), S(0x13d), S(0x13e), S(0x13f),
+S(0x140), S(0x141), S(0x142), S(0x143), S(0x144), S(0x145), S(0x146), S(0x147),
+S(0x148), S(0x149), S(0x14a), S(0x14b), S(0x14c), S(0x14d), S(0x14e), S(0x14f),
+S(0x150), S(0x151), S(0x152), S(0x153), S(0x154), S(0x155), S(0x156), S(0x157),
+S(0x158), S(0x159), S(0x15a), S(0x15b), S(0x15c), S(0x15d), S(0x15e), S(0x15f),
+S(0x160), S(0x161), S(0x162), S(0x163), S(0x164), S(0x165), S(0x166), S(0x167),
+S(0x168), S(0x169), S(0x16a), S(0x16b), S(0x16c), S(0x16d), S(0x16e), S(0x16f),
+S(0x170), S(0x171), S(0x172), S(0x173), S(0x174), S(0x175), S(0x176), S(0x177),
+S(0x178), S(0x179), S(0x17a), S(0x17b), S(0x17c), S(0x17d), S(0x17e), S(0x17f),
+S(0x180), S(0x181), S(0x182), S(0x183), S(0x184), S(0x185), S(0x186), S(0x187),
+S(0x188), S(0x189), S(0x18a), S(0x18b), S(0x18c), S(0x18d), S(0x18e), S(0x18f),
+S(0x190), S(0x191), S(0x192), S(0x193), S(0x194), S(0x195), S(0x196), S(0x197),
+S(0x198), S(0x199), S(0x19a), S(0x19b), S(0x19c), S(0x19d), S(0x19e), S(0x19f),
+S(0x1a0), S(0x1a1), S(0x1a2), S(0x1a3), S(0x1a4), S(0x1a5), S(0x1a6), S(0x1a7),
+S(0x1a8), S(0x1a9), S(0x1aa), S(0x1ab), S(0x1ac), S(0x1ad), S(0x1ae), S(0x1af),
+S(0x1b0), S(0x1b1), S(0x1b2), S(0x1b3), S(0x1b4), S(0x1b5), S(0x1b6), S(0x1b7),
+S(0x1b8), S(0x1b9), S(0x1ba), S(0x1bb), S(0x1bc), S(0x1bd), S(0x1be), S(0x1bf),
+S(0x1c0), S(0x1c1), S(0x1c2), S(0x1c3), S(0x1c4), S(0x1c5), S(0x1c6), S(0x1c7),
+S(0x1c8), S(0x1c9), S(0x1ca), S(0x1cb), S(0x1cc), S(0x1cd), S(0x1ce), S(0x1cf),
+S(0x1d0), S(0x1d1), S(0x1d2), S(0x1d3), S(0x1d4), S(0x1d5), S(0x1d6), S(0x1d7),
+S(0x1d8), S(0x1d9), S(0x1da), S(0x1db), S(0x1dc), S(0x1dd), S(0x1de), S(0x1df),
+S(0x1e0), S(0x1e1), S(0x1e2), S(0x1e3), S(0x1e4), S(0x1e5), S(0x1e6), S(0x1e7),
+S(0x1e8), S(0x1e9), S(0x1ea), S(0x1eb), S(0x1ec), S(0x1ed), S(0x1ee), S(0x1ef),
+S(0x1f0), S(0x1f1), S(0x1f2), S(0x1f3), S(0x1f4), S(0x1f5), S(0x1f6), S(0x1f7),
+S(0x1f8), S(0x1f9), S(0x1fa), S(0x1fb), S(0x1fc), S(0x1fd), S(0x1fe), S(0x1ff),
+S(0x200), S(0x201), S(0x202), S(0x203), S(0x204), S(0x205), S(0x206), S(0x207),
+S(0x208), S(0x209), S(0x20a), S(0x20b), S(0x20c), S(0x20d), S(0x20e), S(0x20f),
+S(0x210), S(0x211), S(0x212), S(0x213), S(0x214), S(0x215), S(0x216), S(0x217),
+S(0x218), S(0x219), S(0x21a), S(0x21b), S(0x21c), S(0x21d), S(0x21e), S(0x21f),
+S(0x220), S(0x221), S(0x222), S(0x223), S(0x224), S(0x225), S(0x226), S(0x227),
+S(0x228), S(0x229), S(0x22a), S(0x22b), S(0x22c), S(0x22d), S(0x22e), S(0x22f),
+S(0x230), S(0x231), S(0x232), S(0x233), S(0x234), S(0x235), S(0x236), S(0x237),
+S(0x238), S(0x239), S(0x23a), S(0x23b), S(0x23c), S(0x23d), S(0x23e), S(0x23f),
+S(0x240), S(0x241), S(0x242), S(0x243), S(0x244), S(0x245), S(0x246), S(0x247),
+S(0x248), S(0x249), S(0x24a), S(0x24b), S(0x24c), S(0x24d), S(0x24e), S(0x24f),
+S(0x250), S(0x251), S(0x252), S(0x253), S(0x254), S(0x255), S(0x256), S(0x257),
+S(0x258), S(0x259), S(0x25a), S(0x25b), S(0x25c), S(0x25d), S(0x25e), S(0x25f),
+S(0x260), S(0x261), S(0x262), S(0x263), S(0x264), S(0x265), S(0x266), S(0x267),
+S(0x268), S(0x269), S(0x26a), S(0x26b), S(0x26c), S(0x26d), S(0x26e), S(0x26f),
+S(0x270), S(0x271), S(0x272), S(0x273), S(0x274), S(0x275), S(0x276), S(0x277),
+S(0x278), S(0x279), S(0x27a), S(0x27b), S(0x27c), S(0x27d), S(0x27e), S(0x27f),
+S(0x280), S(0x281), S(0x282), S(0x283), S(0x284), S(0x285), S(0x286), S(0x287),
+S(0x288), S(0x289), S(0x28a), S(0x28b), S(0x28c), S(0x28d), S(0x28e), S(0x28f),
+S(0x290), S(0x291), S(0x292), S(0x293), S(0x294), S(0x295), S(0x296), S(0x297),
+S(0x298), S(0x299), S(0x29a), S(0x29b), S(0x29c), S(0x29d), S(0x29e), S(0x29f),
+S(0x2a0), S(0x2a1), S(0x2a2), S(0x2a3), S(0x2a4), S(0x2a5), S(0x2a6), S(0x2a7),
+S(0x2a8), S(0x2a9), S(0x2aa), S(0x2ab), S(0x2ac), S(0x2ad), S(0x2ae), S(0x2af),
+S(0x2b0), S(0x2b1), S(0x2b2), S(0x2b3), S(0x2b4), S(0x2b5), S(0x2b6), S(0x2b7),
+S(0x2b8), S(0x2b9), S(0x2ba), S(0x2bb), S(0x2bc), S(0x2bd), S(0x2be), S(0x2bf),
+S(0x2c0), S(0x2c1), S(0x2c2), S(0x2c3), S(0x2c4), S(0x2c5), S(0x2c6), S(0x2c7),
+S(0x2c8), S(0x2c9), S(0x2ca), S(0x2cb), S(0x2cc), S(0x2cd), S(0x2ce), S(0x2cf),
+S(0x2d0), S(0x2d1), S(0x2d2), S(0x2d3), S(0x2d4), S(0x2d5), S(0x2d6), S(0x2d7),
+S(0x2d8), S(0x2d9), S(0x2da), S(0x2db), S(0x2dc), S(0x2dd), S(0x2de), S(0x2df),
+S(0x2e0), S(0x2e1), S(0x2e2), S(0x2e3), S(0x2e4), S(0x2e5), S(0x2e6), S(0x2e7),
+S(0x2e8), S(0x2e9), S(0x2ea), S(0x2eb), S(0x2ec), S(0x2ed), S(0x2ee), S(0x2ef),
+S(0x2f0), S(0x2f1), S(0x2f2), S(0x2f3), S(0x2f4), S(0x2f5), S(0x2f6), S(0x2f7),
+S(0x2f8), S(0x2f9), S(0x2fa), S(0x2fb), S(0x2fc), S(0x2fd), S(0x2fe), S(0x2ff),
+S(0x300), S(0x301), S(0x302), S(0x303), S(0x304), S(0x305), S(0x306), S(0x307),
+S(0x308), S(0x309), S(0x30a), S(0x30b), S(0x30c), S(0x30d), S(0x30e), S(0x30f),
+S(0x310), S(0x311), S(0x312), S(0x313), S(0x314), S(0x315), S(0x316), S(0x317),
+S(0x318), S(0x319), S(0x31a), S(0x31b), S(0x31c), S(0x31d), S(0x31e), S(0x31f),
+S(0x320), S(0x321), S(0x322), S(0x323), S(0x324), S(0x325), S(0x326), S(0x327),
+S(0x328), S(0x329), S(0x32a), S(0x32b), S(0x32c), S(0x32d), S(0x32e), S(0x32f),
+S(0x330), S(0x331), S(0x332), S(0x333), S(0x334), S(0x335), S(0x336), S(0x337),
+S(0x338), S(0x339), S(0x33a), S(0x33b), S(0x33c), S(0x33d), S(0x33e), S(0x33f),
+S(0x340), S(0x341), S(0x342), S(0x343), S(0x344), S(0x345), S(0x346), S(0x347),
+S(0x348), S(0x349), S(0x34a), S(0x34b), S(0x34c), S(0x34d), S(0x34e), S(0x34f),
+S(0x350), S(0x351), S(0x352), S(0x353), S(0x354), S(0x355), S(0x356), S(0x357),
+S(0x358), S(0x359), S(0x35a), S(0x35b), S(0x35c), S(0x35d), S(0x35e), S(0x35f),
+S(0x360), S(0x361), S(0x362), S(0x363), S(0x364), S(0x365), S(0x366), S(0x367),
+S(0x368), S(0x369), S(0x36a), S(0x36b), S(0x36c), S(0x36d), S(0x36e), S(0x36f),
+S(0x370), S(0x371), S(0x372), S(0x373), S(0x374), S(0x375), S(0x376), S(0x377),
+S(0x378), S(0x379), S(0x37a), S(0x37b), S(0x37c), S(0x37d), S(0x37e), S(0x37f),
+S(0x380), S(0x381), S(0x382), S(0x383), S(0x384), S(0x385), S(0x386), S(0x387),
+S(0x388), S(0x389), S(0x38a), S(0x38b), S(0x38c), S(0x38d), S(0x38e), S(0x38f),
+S(0x390), S(0x391), S(0x392), S(0x393), S(0x394), S(0x395), S(0x396), S(0x397),
+S(0x398), S(0x399), S(0x39a), S(0x39b), S(0x39c), S(0x39d), S(0x39e), S(0x39f),
+S(0x3a0), S(0x3a1), S(0x3a2), S(0x3a3), S(0x3a4), S(0x3a5), S(0x3a6), S(0x3a7),
+S(0x3a8), S(0x3a9), S(0x3aa), S(0x3ab), S(0x3ac), S(0x3ad), S(0x3ae), S(0x3af),
+S(0x3b0), S(0x3b1), S(0x3b2), S(0x3b3), S(0x3b4), S(0x3b5), S(0x3b6), S(0x3b7),
+S(0x3b8), S(0x3b9), S(0x3ba), S(0x3bb), S(0x3bc), S(0x3bd), S(0x3be), S(0x3bf),
+S(0x3c0), S(0x3c1), S(0x3c2), S(0x3c3), S(0x3c4), S(0x3c5), S(0x3c6), S(0x3c7),
+S(0x3c8), S(0x3c9), S(0x3ca), S(0x3cb), S(0x3cc), S(0x3cd), S(0x3ce), S(0x3cf),
+S(0x3d0), S(0x3d1), S(0x3d2), S(0x3d3), S(0x3d4), S(0x3d5), S(0x3d6), S(0x3d7),
+S(0x3d8), S(0x3d9), S(0x3da), S(0x3db), S(0x3dc), S(0x3dd), S(0x3de), S(0x3df),
+S(0x3e0), S(0x3e1), S(0x3e2), S(0x3e3), S(0x3e4), S(0x3e5), S(0x3e6), S(0x3e7),
+S(0x3e8), S(0x3e9), S(0x3ea), S(0x3eb), S(0x3ec), S(0x3ed), S(0x3ee), S(0x3ef),
+S(0x3f0), S(0x3f1), S(0x3f2), S(0x3f3), S(0x3f4), S(0x3f5), S(0x3f6), S(0x3f7),
+S(0x3f8), S(0x3f9), S(0x3fa), S(0x3fb), S(0x3fc), S(0x3fd), S(0x3fe), S(0x3ff)
+};
+#endif /* MAKE_IDENTITY_MAP */
+
+/*
+** Kernel address mappings, present in every page table
+*/
+mapping_t kmap[] = {
+ // va pa_start pa_end perms
+ { KERN_BASE, 0, EXT_BASE, PDE_RW },
+ { KERN_VLINK, KERN_PLINK, V2P(_data), 0 },
+ { (uint32_t) _data, V2P(_data), KERN_BASE, PDE_RW },
+ { DEV_BASE, DEV_BASE, 0, PDE_RW }
+};
+const uint_t n_kmap = sizeof(kmap) / sizeof(kmap[0]);